Design Patterns

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Version 3.6.0

E n g © Marco Torchiano, 2018
http://softeng.polito.it
SONE RIGHTS RESERVED @ @

@creative
commons

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by
the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No [Izerivative Works. You may not alter, transform, or build upon this
work.

= For any reuse or distribution, you must make clear to others the
license terms of this work.

*= Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Pattern

A reusable solution
to a known problem
in a well defined context

...just one of the possible definitions

Pattern

= Context
+ A (design) situation giving rise to a (design)
problem
= Problem

+ Set of forces repeatedly arising in the context

- Force: any relevant aspect of the problem (Eg.
requirements, constraints, desirable properties)

= Solution

+ A proven resolution of the problem

+ Configuration to balance forces
- Structure with components and relationships
- Run-time behaviour

SOftEng

Example @@@E

= Context:
*You are in a crowded pub
* Problem:

* Other people are waiting in front of you
+ You want to get the beer asap
* You don’t want to start a fight

= Solution:

+ Try to spot the last person in the line
* You enter the line after her/him

History

= Initially proposed by Chrisopher
Alexander

» He described patterns for architecture
(of buildings)

* The pattern is, in short, at the same time
a thing, which happens in the world, and
the rule which tells us how to create that
thing and when we create it. It is both a
process and a thing ...

OftEng

Types of Pattern

= Architectural Patterns
+ Address system wide structures

» Design Patterns
+ Leverage higher level mechanisms

» |dioms
* Leverage language specific features

Architectural pattern

= Expresses a fundamental structural
organization schema for software

systems

* Provides a set of predefined
components with their responsibilities

= Defines the rules and guidelines for
organizing the relationships between

the components

ARy
Example W[E@w
= Context: ZPAWEZ@ M

+ several programs that are used in sequence read
from input and write sequentially to output

= Problem:

¢ there are a lot of intermediate files used for
communication between programs

= Solution:

+ adopt a pipe & filter architecture feeding a
program with the result of the previous one

Design pattern

= Provides a scheme for refining
components of a software system or
their relationships

= Describes a commonly recurring
structure of communicating
components

Example @E@H@W
= Context: WE@M

+ A class library providing few functionalities
contains a lot of classes

= Problem:

+ The user is exposed to the internal complexity of
the library

= Solution:

+ Create a new facade class that interacts with the
user and hide all the details

ldiom

* |[s a low-level pattern specific to a
programming language
= Describes how to implement particular

aspects of components or the
relationships between them

= L everages the features of a
programming language

Example

= Context:

* two classes, very similar except some

details
* Problem:

¢ double effort in maintenance

= Solution:

* create a generic containing the common
parts, and make the classes derive from

it.

Pattern Description

= Name

= Problem

= Context

= Forces

= Solution

= Force Resolution
= Design Rationale

Coplien

http://softang. poli

Name

Intent @@[?
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Related Patterns

Pattern language

» Pattern do not exist in isolation

+ Two or more patterns are applied
together

+ A pattern is used to implement part of
another pattern

+ A pattern can introduce a problem solved
by another

= We have Pattern Languages
¢ Or pattern systems

Pattern Language

= Collection of patterns together with
guidelines for
* Implementation
¢+ Combination
* Practical use

= Should

+ Count enough patterns
* Describe patterns uniformly
+ Present relationships

= E'?g 16

Example

= MVC is implemented using

¢ Observer
¢ lterator

Design Patterns (GoF)

= Describe the structure of components
= Most widespread category of pattern

= First category of patterns proposed for
software development

Design Patterns (GoF)

= Creational

+ E.g. Abstract Factory, Singleton
= Structural

+ E.g. Facade, Composite
" Behavioral Design Patterns
s Class: e.g. Template Method | ovroiaiiiiae
+ Object: e.g. Observer o

Design patterns

» Description of communicating objects
and classes that are customized to
solve a general design problem in a
particular context

= A design pattern names, abstracts,
and identifies the key aspects of a
common design structure that make it
useful for creating a reusable object-
oriented design

OftEng 20

Description

= Name and classification

= |[ntent
+ Also known as

= Motivation

= Applicability

= Structure

= Participants

» Collaborations

Description

= Consequences
Implementation
Sample code

= Known uses
Related patterns

21

22

Classification

= Purpose
¢ Creational
¢ Structural
+ Behavioral

= Scope
+ Class
+ Object

Classification

Creational Structural Behavioral
Class 1 1 2

Object 4 6 10

Pattern selection

= Consider how patterns solve problems
= Scan intent sections

= Study how pattern interrelate

= Study patterns of like purpose

» Examine a cause of redesign

» Consider what should be variable in
your design

Using a pattern

= Read through the pattern

» Go back and study

¢ Structure
+ Participants
¢ Collaborations

» Look at the sample code

Using a pattern

» Choose names for participants
+ Meaningful in the application context

= Define the classes

» Choose operation names
* Application specific
* Implement operations

Creational patterns

» Factory Method
= Abstract Factory
= Builder

» Prototype

= Singleton

27

28

Abstract Factory

= Context

+ A family of related classes can have

different implementation details

= Problem

+ The client should not know anything

about which variant they are using /

creating

Abstract Factory Example

WidgetFactory

#Operation(i: int): int
/+createWindow()
/+createButton()

]

ConcreeFactoryVista
#Operation(i: int): int
/+createWindow()
/+createButton()

| ____ creates _ _ _ _ _ _ _ _ _____

AbstractWindow

WindowVista | | Windowosx |
ConcreeFactoryOSX 4 g ' N g
#Operation(i: int): int | :
/+createWindow() | creates

/+createButton()

Abstract Factory

AbstractFactory

#Operation(i: int): int
/+createProductA()

/+createProductB() AbstractProductA

| ConcreteProductAX| | ConcreteProductAY
ConcreeFactoryX ConcreeFactoryY ’ 4 ' ’ N .
#Operation(i: int): int #Operation(i: int): int | :
/+createProductA() /+createProductA() [__ _ ____ _1__ ___ ______ creates
/+createProductB() /+createProductB() :
|
i |
| creates _ _ _ _ _________ '
Eng 31

Singleton

= Context:

+ A class represents a concept that requires
a single instance

= Problem:

¢ Clients could use this class in an
inappropriate way

Singleton

Singleton SingleD
-Singleton() class

+getinstance(): Singleton _|

singletonOperation() Instantiation
static method

private Singleton() { }
private static Singleton instance;
public static Singleton getInstance() {

if (instance==null)
instance = new Singleton();
return instance;

OftEng 33

Singleton Example

= java.awt.Toolkit
+ Singleton + FactoryMethod

java.awt::Toolkit

-Toolkit()
+getDefaultToolkit(): Toolkit

Structural patterns

= Structural patterns are concerned with
how classes and objects are composed
to form larger structures.

GoF structural patterns

= Adapter
Bridge
Composite
Decorator
Facade
Flyweight

Proxy

Adapter

= Context:

+ A class provides the required features but
its interface is not the one required

» Problem:

+ How is it possible to integrate the class
without modifying it

- Its source code could be not available
- It is already used as it is somewhere else

Adapter

Target

Client

Request()

Adapter

Request()

ad

Adaptee

Aptee

SpecificRequest()

37

38

Adapter example

DrawingEditor

Shape

BoundingBox()
CreateManipulator()

T

TextView

GetExtent()

Line

TextShape

BoundingBox()
CreateManipulator()

BoundingBox()
CreateManipulator()

Java Listener Adapter

* In Java GUI events are handled by

Listeners

= Listener classes need to implement
Listener interfaces

¢ Include several methods
* They all should be implemented

39

40

public
public
// ..

}
public

Java Listener Adapter

class MyListener {

void KeyPressed(..) {}
void KeyReleased(..) {
handle event

void KeyTyped(..){} }

class MyListener({
public void KeyReleased(..) {
// .. handle event

41

Java Listener Adapter

jawa.awt.event | java.awt

«interface»

KeyListener <-—-———= se__ 1 - JFrame
KeyPressed() A
KeyReleased()

KeyTyped()
4 Extends
: KeyAdapter
Implements _ _ | KeyPressed()
KeyReleased()
KeyTyped
yTyped() MyFrame
A

Extends
MyListener
KeyReleased()

42

Structural Class Patterns

= Adapter pattern

* Inheritance plays a fundamental role
* Only example of structural class pattern

Composite

= Context:

* You need to represent part-whole
hierarchies of objects

* Problem

+ Clients are complex

+ Difference between composition objects
and individual objects.

Composite

Client

Component

operation()

child

add(Component) 0..”

remove(Component)

getChild()

1

Leaf

operation()

Composite

operation()
add(Component)
remove(Component)
getChild()

Composite Example

= Arithmetic expressions representation

¢ Operators
* Operands

= Evaluation of expressions

Composite Example

Calculator Expression
evaluate() operands
print() 0..”
Value Operation
evaluate() op: String
print() evaluate()
print()

Eng -

Composite Example

abstract class Expression ({
public abstract int evaluate();
public abstract String print();

}

Composite Example

class Value {
private int value;

public Value (int v) {
value = v;

}

public int evaluate () {

return value;

}

public String print () {
return new String(value) ;

Composite Example

class Operation ({
private char op; // +, -, *, /
private Expression left, right

public Operation (char op,
Expression 1, Expression r) {
this.op = op;
left = 1;
right= r;
}

49

50

Composite Example

class Operation ({

public evaluate () {
switch (op) {
case '+’ : return
left.evaluate() +
right.evaluate() ;
break;

Composite Example

class Operation {
public print () {

return left.print() + op +
right.print() ;

http://softang. poli

51

52

Facade

= Context

+ A functionality is provided by a complex
group of classes (interfaces, associations,
etc.)

* Problem

+ How is it possible to use the classes
without being exposed to the details

Client

/ — \

tEng 54

http://softang polito.it

Behavioral patterns

= Behavioral patterns are concerned with
algorithms and the assignment of
responsibilities between objects.

= Not just patterns of objects or classes
but also the patterns of communication.

+ Complex control flow that's difficult to follow
at run-time.

+ Shift focus away from flow of control to let
concentrate just on the way objects are
interconnected.

GoF behavioral patterns

Object-level Class-level

¢ Chain of * Template Method

Responsibility ¢ Interpreter
¢+ Command

¢+ |terator

+ Mediator
+ Memento
¢ Observer
+ State

+ Strategy
+ Visitor

= E'?g 56

Mechanisms

* Encapsulating variation

= Objects as arguments

* Information circulation policies
= Sender and Receiver decoupling

Encapsulating Variation

= A varying aspect of a program
= Captured by an object

* Other delegate operations to the “variant”
object

Argument Objects

= Often an object is passed as argument
+ Hides complexity from clients
+ Concentrate the “active” code in one class

- Eng 59

Information circulation

= Responsibility of how to circulate
information may be:

+ Distributed among different parties.
* Encapsulated in a single object.

Communication decoupling

= Decoupling senders and receivers is a
key to:
+ Reduce coupling
* Improve reusability
+ Enforce layering and structure

Observer

= Context:

* The change in one object may influence
one or more other objects

* Problem
+ High coupling

* Number and type of objects to be notified
may not be known in advance

Observer

Subject
attach(Observer) b Observer
detach(Observer) © servgrs; update()
notify() -
Concre{eSubject 7
- state ConcreteObserver
getState() update()
setState()
Eng

Observer - Consequences

63

+ Abstract coupling between Subject and

Observer

+Support for broadcast communication

- Unanticipated updates

http://softang. poli

Observer-Observable

» Allow a standardized interaction
between an objects that needs to
notify one or more other objects

» Defined in package java.util

» Class Observable

» |[nterface Observer

Observer-Observable

java.util

Observer

Observable

+ update() : void

Z\

<{ notifies

+ addObserver() : void
+ setChanged() : void
+ notifyObservers() : void

JAN

UnitObserver

+ update() : void

tasks

Task

+ longRunningTask() : void

Java Observer-Observable

class Observable({

void addObserver(..) {}
void deleteObserver(..) {}
void deleteObservers () {}
int countObservers () {}
void setChanged() {}

void clearChanged() ({}
boolean hasChanged() {}
void notifyObservers() {}
void notifyObservers(..) {}

Observer-Observable

= Class Observable manages:

* registration of interested observers by means of
method addObserver ()

* sending the notification of the status change to
the observer(s) together with additional

information concerning the status (event object).

» |nterface Observer allows:

+ Receiving standardized notification of the
observer change of state through method
update () accepts two arguments:

- Observable object that originated the notification
- additional information (the event object)

OftEng

67

Observer-Observable

» Sending a notification from an
observable element involves two
steps:

+ record the fact the the status of the
Observable has changed, by means of
method setChanged (),

+ send the actual notification while
providing the additional information (the
event object), by means of method
notifyObservers ()

Inheritance vs. composition

Reuse can be achieved via:

* The reusing class has the reused methods
available as own methods.

+ Clients can invoke directly inherited methods

* The reusing class has the reused methods
available in an included object (attribute)

+ The reusing class must provide methods that
accept clients requests and delegate to the
included object

OftEng

Observer subject w/inheritance

public class Subject
extends Observable ({

String prop="ini";

public void setProp (String wval) {
setChanged() ;
property = val;
notifyObservers ("theProp") ;

}

nnnnnnnnnnnnnnnnnnnnnnn

Observer subject w/composition

public class Subject {

PropertyChangeSupport pcs =
new PropertyChangeSupport (this) ;

String prop="ini";

public void setProp (String wval) ({
String old = property;
property = val;
pcs. firePropertyChange (" theProp”,o0ld,val) ;
}
// delegation:
public void addObs (PropertyChangeListener 1) {
pcs.addPropertyChangelistener ("theProp”,1) ;

} o}
SOftEng

Observer with inheritance

public class Concerned

implements {
@Override
public void (Observable src,

Object arg) {
System.out.println("Variation of " +

) ;

Observer with composition

public class Concerned
implements {

@Override
public void (
PropertyChangeEvent evt) ({
System.out.println("Variation of " +

Composition

<<access>>
PropertyChangeSupport i PropertyChangeEvent
+ listeners i
PropertyChangeListener
0.1 *
PN
+pcs /M1 h
1
Subject Concerned
<<use>>
+ prop : string
+ addObserver(in listener: PropertyChangeListener)
+ setProp()
SOftEng 75
Observers
Perc
Perc 0%
B C

Subject

SOftEng

http://softang. polito.

76

Template Method

= Context:

+ An algorithm/behavior has a stable core
and several variation at given points

= Problem

+ You have to implement/maintain several
almost identical pieces of code

Template Method

Core algorithm,
invokes abstract
primitive
operations

AbstractClass
templateMethod() > _
primitiveOperation() Y AN
N primitiveOperation()

primitiveOperation()

ConcreteClass

primitiveOperation()

/

Define a
variant of the
algorithm

Template Method Example

Sorter

sort(Object)
compare()

1

IntegerSorter

compare()

Strategy

= Context

+ Many classes or algorithm has a stable
core and several behavioral variations

* Problem

+ Several different implementations are
needed.

+ Multiple conditional constructs tangle the
code.

Eng 80

http://softang polito.it

Strategy

Context

Contextlinterface()

Strategy

Strategy Example

Collections

algorithminterface()

1

ConcreteStrategyA

algorithminterface()

ConcreteStrategyB

algorithminterface()

sort()

«Interface»
Comparator

compare(Object a, Object b)

StringComparator

compare()

IntegerComparator

compare()

81

82

Comparator

» [nterface java.util.Comparator

public interface {
int (Object a, Object b);

}

= Semantics (as comparable): returns

* a negative integer if a precedes b
+0,ifa equalsb
+ a positive integer if a succeeds b

Note: simplified version, actual declaration uses generics

= Eng 83

Strategy Consequences

+ Avoid conditional statements

+ Algorithms may be organized in families
+ Choice of implementations

+ Run-time binding

— Clients must be aware of different
strategies

- Communication overhead
- Increased number of objects

= Eng 84

Visitor

= Context

* An object structure contains many classes
with differing interfaces.

+ Many different operations need to be
performed on the objects

= Problem

+ The operations on the objects depend on
their concrete classes

+ Classes could be polluted with several
operations

OftEng 85

Visitor

Visitor
Client viewElemA(ConcreteElemA)
ViewElemB(ConcreteElemB)

A

[|
ConcreteVisitor1 ConcreteVisitor2

viewElemA(ConcreteElemA) viewElemA(ConcreteElemA)
viewElemB(ConcreteElemB) viewElemB(ConcreteElemB)

Element

accept(Visitor)

A

[|
ConcreteElemA ConcreteElemB

accept(Visitor) accept(Visitor)

= Eng 86

Visitor Example

StatementVisitor
Compiler visitAssignment(Assignment
visitReference(Reference)
I 4 |
TypeCheckingVisitor CodeGenerationVisitor
visitAssignment(Assignment) visitAssignment(Assignment)
visitReference(Variable) visitReference(Reference)

~

Statement

accept(Visitor)

4

[|
Assignment Reference

accept(Visitor) accept(Visitor)

- Eng 87

Visitor Consequences

+ Adding new operations is very easy
+ Behavior is partitioned

+ Can visit class hierarchies

+ State can be accumulated

- Difficult to add new concrete elements
- Break of encapsulation

References

= M.Fowler, K. Scott, UML Distilled, 3d
ed. Addison-Wesley, 2003.

= E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

= E.Freeman, E.Freeman, K.Sierra,
B.Bates. Head First Design Patterns,
O’Reilly, 2004

OftEng 89

