
JUnit tests

Version 3.1.0 - April 2018
© Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

JUnit
§  JUnit is a testing framework for Java

programs
w Written by Kent Beck and Erich Gamma

§  It is a framework with unit-testing
functionalities

§  Integrated in Eclipse development
Environment

http://www.junit.org

Unit Testing
§  Unit testing is particularly important

when software requirements change
frequently
w Code often has to be refactored to

incorporate the changes
w Unit testing helps ensure that the

refactored code continues to work

JUnit Framework
§  JUnit helps the programmer:

w Define and execute tests and test suites
w Formalize requirements and clarify

architecture
w Write and debug code
w Integrate code and always be ready to

release a working version

History
§  1997 on the plane to OOPSLA97 Kent

Beck and Erich Gamma wrote JUnit
§  Junit.org – August 2000
§  Junit 3.8.1 – September 2002
§  Junit 4.0 – February 2006

w Latest release: 4.12 - Dec 2012
§  Junit 5.0 – September 2017

6

What JUnit does
§  For each test (method) JUnit

w calls pre-test fixture
–  Intended to acquire resources and create any

objects that may be needed for testing
w calls the test method
w calls post-test fixtures

–  Intended to release resources and remove any
objects you created

Test method
§  A test method doesn’t return a result
§  The test method performs operations

and checks the results
§  Checks are performed using a set of
assert*() method

§  The JUnit framework detects the
anomalies and deals with them

assert*() methods
assertTrue(boolean test)

assertFalse(boolean test)

assertEquals(expected, actual)

assertSame(Object expected,
 Object actual)

assertNotSame(Object expected,
 Object actual)

assertNull(Object object)

assert*() methods
§  For a condition
assertTrue(condition)

w If the tested condition is
– true => proceed with execution
– false => abort the test method execution,

prints out the optional message

assert*() methods

assertNotNull(Object object)

fail()
w All the above may take an optional String

message as the first argument, e.g.
 static void assertTrue(
 String message,
 boolean test)

assert*()
§  For objects, int, long, byte:
assertEquals(expected, actual)

w Ex. assertEquals(2 , unoStack.size());
§  For floating point values:
assertEquals(expected,actual,err)

w Ex. assertEquals(1.0, Math.cos(3.14),
0.01);

SYNTAX
JUnit 3

13

Test a Stack
public class StackTest extends TestCase {
 public void testStack() {
 Stack aStack = new Stack();
 assertTrue("Stack should be empty!",
 aStack.isEmpty());
 aStack.push(10);
 assertTrue("Stack should not be empty!",
 !aStack.isEmpty());
 aStack.push(-4);
 assertEquals(-4, aStack.pop());
 assertEquals(10, aStack.pop());
 }
}

extends TestCase

Test method name:
testSomething

One or more assertions
to check results

Test a Stack
public void testStackEmpty() {
Stack aStack = new Stack();
assertTrue(“Stack should be empty!”,
 aStack.isEmpty());
aStack.push(10);
assertFalse(“Stack should not be empty!”,
 aStack.isEmpty());

}
public void testStackOperations() {
Stack aStack = new Stack();
 aStack.push(10);
 aStack.push(-4);
 assertEquals(-4, aStack.pop());
 assertEquals(10, aStack.pop());
}

Running a test case
§  Running a test case

w Executes all methods
– public
– Returning void
– With no arguments
– Name starting with “test”

w  Ignores the rest
§  The class can contain helper methods

w That are not public
w Or not starting with “test”

Creating a test class
§ Define a subclass of TestCase
§ Override the setUp() method to

initialize object(s) under test.
§ Override the tearDown() method to

release object(s) under test.
§ Define one or more public testXXX()

methods that exercise the object(s)
under test and assert expected results.

Implementing setUp() method
§ Override setUp() to initialize the

variables, and objects
w Implements a fixture

§  Since setUp() is your code, you can
modify it any way you like (such as
creating new objects in it)

§  Reduces the duplication of code

The tearDown() method
§  In most cases, the tearDown()

method doesn�t need to do anything
w The next time you run setUp(), your

objects will be replaced, and the old
objects will be available for garbage
collection

w Like the finally clause in a try-catch-
finally statement, tearDown() is where
you would release system resources
(such as streams)

Test suites
§  Allow running a group of related tests
§  To do so, group your test methods in

a class which extends TestSuite

TestSuite
§  Combine many test cases in a test suite:

public class AllTests extends TestSuite {
public static TestSuite suite() {
 TestSuite suite = new TestSuite();
 suite.addTestSuite(StackTester.class);
 suite.addTestSuite(AnotherTester.class);
}

Example: Counter class
§  For the sake of example, we will

create and test a trivial �counter�
class
w The constructor will create a counter and

set it to zero
w The increment method will add one to

the counter and return the new value
w The decrement method will subtract one

from the counter and return the new
value

Example: Counter class
§ We write the test methods before we

write the code
w This has the advantages described earlier
w Depending on the JUnit tool we use, we

may have to create the class first, and we
may have to populate it with stubs
(methods with empty bodies)

§ Don�t be alarmed if, in this simple
example, the JUnit tests are more
code than the class itself

JUnit tests for Counter
   public class CounterTest extends TestCase {
 Counter counter1;

   public void setUp() {
   // creates a (simple) test fixture
 counter1 = new Counter();
 }

   protected void tearDown() { }
   // no resources to release

  

JUnit tests for Counter…

   public void testIncrement() {
 assertTrue(counter1.increment()== 1);
 assertTrue(counter1.increment()== 2);
 }

   public void testDecrement() {
 assertTrue(counter1.decrement()==-1);
 }
} // End from last slide

The Counter class itself
  public class Counter {
 int count = 0;
 public int increment() {
 return ++count;
 }
 public int decrement() {
 return --count;
 }

   public int getCount() {
 return count;
 } }

SYNTAX
Junit 4

27

JUnit 4
§ Make use of java annotations

w Less constraints on names
w Easier to read/write

§  Backward compatible with JUnit 3
§  Assertions

w assert*() methods
w assertThat() method

– To use the Hamcrest matchers

28

Test a Stack (JUnit4)
public class TestStack {
 @Test
 public void testStack() {
 Stack aStack = new Stack();
 assertTrue("Stack should be empty",
 aStack.isEmpty());
 aStack.push(10);
 assertFalse("Stack should not be empty!",
 aStack.isEmpty());
 aStack.push(-4);
 assertEquals(-4, aStack.pop());
 assertEquals(10, aStack.pop());

 }
}

Any class

@Test annotation

One or more assertions
to check results

Running a test case
§  The JUnit runner

w Executes all methods
– Annotated with “@Test”
– public
– Returning void
– With no arguments

w  Ignores the rest
§  The class can contain helper methods provided

they are not annotated
w Not public

The pre-test fixture
§  Annotate a method with @Before to

make it a post-test fixture:
w  It is executed before each test method is run
w  It is the place to initialize attributes that will

be used by tests
§  There no limit to the setup you can do in

a pre-test method: it is a general method
§  It helps reducing duplication of code

The post-test fixture
§  Annotate a method with @After to make

it a post-test fixture
w  It is executed after each test method is run
w  It is where you would release system

resources (such as streams)
§  In most cases, a post-test fixture is not

required
w Before the next test is executed the setup

fixture is run so attribute will be re-
initialized

TestSuite
§  Combines many test cases in a test

suite:

@RunWith(Suite.class)

@SuiteClasses({

 TestStack.class, AnotherTest.class

})

public class AllTests { }

JUnit 4 Annotations
§  @Test

w Marks test methods
§  @Before and @After

w Mark pre and post fixtures
§  Test suites require:
§  @RunWith(Suite.class)
§  @Suite.SuiteClasses({ … })

34

JUnit 4 Packages and classes
§  All classes are in packages org.junit
§  Assertions are made available with

w import static org.junit.Assert.*;

§  Annotations have to be imported as
w import org.junit.After;
w import org.junit.Before;
w import org.junit.Test;

35

Counter test with Junit 4
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
public class CounterTests {
 private Counter counter;
 @Before
 public void setUp() throws Exception {
 counter = new Counter(); }
 @After
 public void tearDown() throws Exception {}

36

Counter test with Junit 4
 @Test
 public void testGetCounterInitial() {
 assertEquals(0,counter.getCount()); }
 @Test
 public void testIncrement() {
 assertEquals(1,counter.increment());
 assertEquals(2,counter.increment()); }
 @Test
 public void testDecrement() {
 assertEquals(-1,counter.decrement()); }

}

37

Junit 4 test suite
import org.junit.runner.RunWith;

import org.junit.runners.Suite;

import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)

@SuiteClasses({ CounterTests.class })

public class AllTests { }

38

ECLIPSE JUNIT PLUG-IN

Junit in Eclipse - Run as JUnit Test

§  Run
§  Run As..
§  Junit Test

Red / Green Bar

expected <-3> but was <-4>

…use JUnit

Keep the bar green to keep the code clean…

Organizing Tests in Eclipse
§  Second source folder

w Place tests within a second source folder
w Allows clear separation
w Add JUnit library to the project

§  Separate project
w Place tests inside a separate project
w No unit test libraries are added to your

primary project
w Refer to the primary project

JUnit in Eclipse � Path Setup
§ When creating a new test case

w Eclipse suggests adding the JUnit library
§ When importing a test, the library

must be added explicitly
w open project�s property window
w java build path
w libraries
w JUnit

USING JUNIT

45

Test-Driven Development
§  Specify a portion of the feature yet to be

coded
§  Run the test and see it fail (red bar)
§  Write code until the tests pass (green

bar)
§  Repeat until whole feature implemented
§  Refactor

w Keeping the bar green

Bug reproduction
§ When a bug is reported
§  Specify the expected correct outcome
§  See the test fail

w Reproduce the bug
§ Modify the code until the bug-fix tests

pass.
§  Check for regressions

47

Guidelines
§  Test should be written before code
§  Test everything that can break
§  Run tests as often as possible

§ Whenever you are tempted to type
something into a print statement or a
debugger expression write it as a test

– M.Fowler

48

Limitations of unit testing
§  JUnit is designed to call methods and

compare the results they return
against expected results
w This ignores:

– Programs that do work in response to
GUI commands

– Methods that are used primary to
produce output

Limitations of unit testing…
§ Heavy use of JUnit encourages a
�functional� style, where most
methods are called to compute a
value, rather than to have side effects
w This can actually be a good thing
w Methods that just return results, without

side effects (such as printing), are
simpler, more general, and easier to
reuse

Summary: elements of JUnit
§  assert*()

w Comparison functions
§  Test cases

w Are implemented by methods in test
classes

§  TestSuite
w Class containing a sequence of TestCase

Why JUnit
§  Allow you to write code faster while increasing

quality
§  Elegantly simple
§  Check their own results and provide immediate

feedback
§  Tests is inexpensive
§  Increase the stability of software
§  Developer tests
§  Written in Java
§  Free
§  Gives proper uniderstanding of unit testing

References
§  K.Beck, E.Gamma. Test Infected:

Programmers Love Writing Tests
w http://members.pingnet.ch/gamma/

junit.htm
§  Junit home page

w https://junit.org
§ Hamcrest matchers

w http://hamcrest.org/JavaHamcrest/

53

