JUnit tests

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Version 3.1.0 - April 2018
n g © Marco Torchiano, 2018
http://softeng.polito.it

SOME RIGHTS RESERVED @ @

@creative
commons

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by
the author or licensor.

@Non—commercial. You may not use this work for commercial purposes.

@No [Izerivative Works. You may not alter, transform, or build upon this
work.

= For any reuse or distribution, you must make clear to others the
license terms of this work.

*= Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

JUnit

» JUnit is a testing framework for Java
programs

+ Written by Kent Beck and Erich Gamma

= |t is a framework with unit-testing
functionalities

» [ntegrated in Eclipse development
Environment

http://www.junit.org

JUnit

oftEng

Unit Testing

= Unit testing is particularly important
when software requirements change
frequently
+ Code often has to be refactored to
incorporate the changes

+ Unit testing helps ensure that the
refactored code continues to work

JUnit Framework

= JUnit helps the programmer:
¢ Define and execute tests and test suites

+ Formalize requirements and clarify
architecture

+ Write and debug code

* Integrate code and always be ready to
release a working version

History

= 1997 on the plane to OOPSLA97 Kent
Beck and Erich Gamma wrote JUnit

= Junit.org - August 2000
* Junit 3.8.1 - September 2002

* Junit 4.0 - February 2006
¢ Latest release: 4.12 - Dec 2012

* Junit 5.0 - September 2017

What JUnit does

» For each test (method) JUnit

¢ calls pre-test fixture

- Intended to acquire resources and create any
objects that may be needed for testing

¢ calls the test method

+ calls post-test fixtures

- Intended to release resources and remove any
objects you created

Test method

= A test method doesn’t return a result

* The test method performs operations
and checks the results

= Checks are performed using a set of
assert* () method

* The JUnit framework detects the
anomalies and deals with them

assert* () methods

assertTrue (boolean test)
assertFalse (boolean test)
assertEquals (expected, actual)

assertSame (Object expected,
Object actual)

assertNotSame (Object expected,
Object actual)

assertNull (Object object)

SOrftEng

assert* () methods

= For a condition

assertTrue (condition)

+ If the tested condition is
- true => proceed with execution

- false => abort the test method execution,
prints out the optional message

http://softena. polito. it

assert* () methods

assertNotNull (Object object)
fail()

+ All the above may take an optional String
message as the first argument, e.q.

static void assertTrue (
String message,
boolean test)

assert* ()

= For objects, int, long, byte:

assertEquals (expected, actual)
* EX. assertEquals(2 , unoStack.size());
* For floating point values:

assertEquals (expected,actual, err)

* EX. assertEquals (1.0, Math.cos(3.14),
0.01);

http://softeng. polito. it

JUnit 3

SYNTAX

SOrftEng 13

Te St a StaC k [extends/IestCase

///

public class StackTest extends TestCase {

™\

public void testStack() pi:::{Tegrnmhodname: \
Stack aStack = new Stack(); LteStSOmething
assertTrue ("Stack should be empty!",

)

aStack.isEmpty()) ;
aStack.push(10) ;

assertTrue ("Stack should not be empty!",

laStack.isEmpty()) ;
aStack.push(-4) ;

assertEquals (-4, aStack.pop())
assertEqualEjlo, aStack.pop())

One or more assertions

to check results
SortEng N)

http://softena. polito. it

Test a Stack

public void StackEmpty () {
Stack aStack = new Stack();
(“Stack should be empty!”,
aStack.isEmpty()) ;
aStack.push(10) ;
(“Stack should not be empty!”,
aStack.isEmpty()) ;

}

public void StackOperations () {
Stack aStack = new Stack()

aStack.push(10) ;
aStack.push(-4) ;
(-4, astack.pop())
(10, aStack.pop())

Running a test case

* Running a test case

+ Executes all methods
- public
- Returning void
- With no arguments
- Name starting with “test’

* Ignores the rest
= The class can contain helper methods

+ That are not public
+ Or not starting with “test”

OrftEng

Creating a test class

= Define a subclass of TestCase

= Override the setUp () method to
initialize object(s) under test.

= Override the tearDown () method to
release object(s) under test.

» Define one or more public testXXX ()
methods that exercise the object(s)
under test and assert expected results.

OftEng

Implementing setUp() method

= Override () to initialize the
variables, and objects

* Implements a fixture

» Since setUp () is your code, you can
modify it any way you like (such as
creating new objects in it)

» Reduces the duplication of code

The tearDown() method

* |[n most cases, the
method doesn’t need to do anything

+ The next time you run setUp (), your
objects will be replaced, and the old
objects will be available for garbage
collection

¢ Like the £inally clause in a try-catch-

finally statement, tearDown () is where
you would release system resources
(such as streams)

OftEng

Test suites

= Allow running a group of related tests

= To do so, group your test methods in
a class which extends

TestSuite

= Combine many test cases in a test suite:

public class AllTests extends TestSuite ({

public static TestSuite suite() ({
TestSuite suite = new TestSuite();
suite.addTestSuite (StackTester.class) ;
suite.addTestSuite (AnotherTester.class) ;

Example: Counter class

» For the sake of example, we will
create and test a trivial “counter”
class
+ The constructor will create a counter and

set it to zero
+ The method will add one to
the counter and return the new value

¢ The method will subtract one
from the counter and return the new
value

OrftEng

Example: Counter class

= We write the test methods before we
write the code
+ This has the advantages described earlier

* Depending on the JUnit tool we use, we
may have to create the class first, and we
may have to populate it with stubs
(methods with empty bodies)

= Don’ t be alarmed if, in this simple

example, the JUnit tests are more
code than the class itself

OftEng

JUnit tests for Counter

public class CounterTest extends TestCase ({
Counter counterl;

public void setUp() ({

// creates a (simple) test fixture
counterl = new Counter() ;

}

protected void tearDown() { }

// no resources to release

JUnit tests for Counter...

public void testIncrement() {
assertTrue (counterl.increment()== 1) ;
assertTrue (counterl.increment ()== 2);

}

public void testDecrement () ({
assertTrue (counterl.decrement ()==-1) ;

}
} // End from last slide

The Counter class itself

public class Counter ({

int count = 0;

public int increment() {
return ++count;

}

public int decrement() ({
return --count;

}

public int getCount() ({
return count;

Junit 4

SYNTAX

JUnit 4

= Make use of java annotations

¢ Less constraints on names
+ Easier to read/write

» Backward compatible with JUnit 3

= Assertions

¢ assert* () methods

¢ assertThat () method
- To use the Hamcrest matchers

OrftEng

27

28

Test a Stack (JUnit4) Any class

public class TestStack ({
annotation

public void testStack () ({
Stack aStack = new Stack() ;
("Stack should be empty",
aStack.isEmpty()) ;
aStack.push(10) ;
("Stack should not be empty!",
aStack.isEmpty()) ;
aStack.push(-4) ;
(-4, astack.pop())
(10, aStack.pop())

} One or more assertions
to check results

Running a test case

= The JUnit runner

+ Executes all methods
- Annotated with “@Test”
- public
- Returning void
- With no arguments

* Ignores the rest

= The class can contain helper methods provided
they are not annotated

* Not public

OrftEng

The pre-test fixture

= Annotate a method with to
make it a post-test fixture:
*+ |t is executed before each test method is run
¢ [t is the place to initialize attributes that will
be used by tests

= There no limit to the setup you can do in
a pre-test method: it is a general method

= |t helps reducing duplication of code

The post-test fixture

= Annotate a method with to make
it a post-test fixture

+ |t is executed after each test method is run

¢+ [t is where you would release system
resources (such as streams)

* |n most cases, a post-test fixture is not
required

+ Before the next test is executed the setup
fixture is run so attribute will be re-
initialized

OrftEng

TestSuite

= Combines many test cases in a test
suite:

(Suite.class)

({
TestStack.class, AnotherTest.class

})
public class AllTests { }

JUnit 4 Annotations

" ATest
+ Marks test methods

» @Before and @After
+ Mark pre and post fixtures

= Test suites require:
" QRunWith (Suite.class)
" @Suite.SuiteClasses({ ... })

JUnit 4 Packages and classes

= All classes are in packages org.junit
= Assertions are made available with

¢ import static org.junit.Assert.*;
= Annotations have to be imported as

¢ import org.junit.After;

¢ import org.junit.Before;

¢ import org.junit.Test;

Counter test with Junit 4

import static org.junit.Assert.*;
import org.junit.After;

import org.junit.Before;

import org.junit.Test;

public class CounterTests ({

private Counter counter;

public void setUp() throws Exception {

counter = new Counter(); }

public void tearDown() throws Exception ({}

OftEng 36

Counter test with Junit 4

@Test

public void testGetCounterInitial () {
assertEquals (0,counter.getCount()),; }

@QTest

public void testIncrement () {
assertEquals (1,counter.increment()) ;
assertEquals (2,counter.increment()); }

@Test

public void testDecrement () {

assertEquals (-1,counter.decrement()); }

Junit 4 test suite

import org.Jjunit.runner.RunWith;
import org.Jjunit.runners.Suite;

import org.Jjunit.runners.Suite.SuiteClasses;

@RunWith (Suite.class)
@SuiteClasses ({ CounterTests.class })

public class AllTests { }

Eng 38

http://softeng. polito. it

ECLIPSE JUNIT PLUG-IN

nttp://softeng polito.it

Junit in Eclipse - Run as JUnit Test

= Run
» Run As.. % -
- Junlt TESt ‘JU 1 StackTester

ZJ 2 Application1

=) 3 Applicazione

ZJ) 4 ProvaStringhe

ZJ 1Jzva Application
X Ron.. “*. 2 JUnit Test

’ »& 3 Run-time Workbench

nttp://softeng. polito.it

Red / Green Bar

il Junit (StackTester) m & x

Runs: 2/2 Errors: 0 Failures: 1 i

Failures | E[f‘.i Hierarchy

BT 2unit (StackTester) m & x
AENRNENERENNNNRNENR

Runs: 22 Errors: 0 Failures: 0

=| Failure Trace

(| ALY

Package Explorer | Hierarchy ‘ JUnit |

ks Em NS

...use JUnit

Keep the bar green to keep the code clean...

nttp://softeng. polito.it

Organizing Tests in Eclipse

= Second source folder
* Place tests within a second source folder
+ Allows clear separation
+ Add JUnit library to the project
= Separate project
+ Place tests inside a separate project

+ No unit test libraries are added to your
primary project
+ Refer to the primary project

OftEng

JUnit in Eclipse — Path Setup

= When creating a new test case

* Eclipse suggests adding the JUnit library
= When importing a test, the library

must be added explicitly

* open project’ s property window

¢+ java build path

+ libraries

+ JUnit

OrftEng

USING JUNIT

Test-Driven Development

= Specify a portion of the feature yet to be
coded

Run the test and see it fail (red bar)

Write code until the tests pass (green
bar)

Repeat until whole feature implemented

Refactor
+ Keeping the bar green

OrftEng

Bug reproduction

= When a bug is reported
» Specify the expected correct outcome

= See the test fail
+ Reproduce the bug

= Modify the code until the bug-fix tests
pass.

» Check for regressions

Guidelines

= Test should be written code
= Test everything that can break
= Run tests as often as possible

= Whenever you are tempted to type
something into a print statement or a
debugger expression write it as a test
- M.Fowler

ortEng 48

Limitations of unit testing

= JUnit is designed to call methods and
compare the results they return
against expected results

+ This ignores:

-Programs that do work in response to
GUI commands

- Methods that are used primary to
produce output

Limitations of unit testing...

= Heavy use of JUnit encourages a
“functional” style, where most
methods are called to compute a
value, rather than to have side effects

+ This can actually be a good thing

+ Methods that just return results, without
side effects (such as printing), are
simpler, more general, and easier to
reuse

OrftEng

Summary: elements of JUnit

= assert®()
+ Comparison functions

= Test cases

* Are implemented by methods in test
classes

= TestSuite
+ Class containing a sequence of TestCase

Why JUnit

= Allow you to write code faster while increasing
quality

» Elegantly simple

= Check their own results and provide immediate
feedback

= Tests is inexpensive

» |ncrease the stability of software

= Developer tests

= Written in Java

* Free

= Gives proper uniderstanding of unit testing

OrftEng

References

» K.Beck, E.Gamma. Test Infected:
Programmers Love Writing Tests

* http://members.pingnet.ch/gamma/
junit.htm

* Junit home page
* https://junit.org
= Hamcrest matchers
+ http://hamcrest.org/JavaHamcrest/

ofrftEng 53

