
Graphical User Interfaces
(GUI)

Version 3.5.0 - May 2018

© Marco Torchiano, Maurizio Morisio, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial

purposes.

§  No Derivative Works. You may not alter, transform, or build upon
this work.

§  For any reuse or distribution, you must make clear to others the

license terms of this work.
§  Any of these conditions can be waived if you get permission from the

copyright holder.

Your fair use and other rights are in no way affected by the above.

History
§  Abstract Window Toolkit (AWT)

• Original GUI API
•  Rely on native OS components

§  Java Foundation Classes (JFC)
•  Announced in 1997
•  Part of JSK since Java 1.2
•  Includes: AWT, Swing (Widget toolkit), Java

2D
•  Lightweight
•  System independent

History
§  JavaFX

• Released in 2008 as a web-oriented
framework

•  JavaFX 2.0 wider support (2012)
•  Part of JDK 8 (2014)
• Oracle announce intention to not include

JavaFX as part of JDK since Java 11
(September 2018)

JFC / Swing
§ Widget Toolkit

•  a widget (or control) is an element  
of a GUI that conveys information  
and/or represent a point of interaction

§ Model-View-Controller pattern

§  Pluggable look-and-feel

§  Technology for rich client
development
•  Seamlessly integrates several different

capabilities
•  FXML: markup language for UI definition
• New graphics pipeline (Prism)
• New Toolkit (Glass)
• Multimedia framework
• Web component
•  Scene Builder

MVC

View Controller

Model

Event

Get data Operate

Update

MVC example
plusBtnClick(){
 theCounter.increment();
 view.update();
}

minusBtnClick(){
 theCounter.decrement();
 view.update();
}

class Counter{
 private int value;
 public void increment(){ value++;}
 public void decrement(){ value--;}
 public int getValue(){ return value;}
}

MVC Principles
§ When building a GUI we must consider

two main aspects:
•  Layout (View): how to place the graphical

elements to achieve a give visual aspect
•  Events (Controller): which behavior

associate to elements’ events
§  Application logic (Model) must

remain, as far as possible, separate
from user interface.

Execution flow
§  There is no predefined order of

execution in GUI applications
• Operation are performed in response to

external events (e.g. mouse click)
•  Event handling is serialized
• To execute several operations in parallel,

threads must be used
§ Method main in GUIs has the only goal

of instantiating the graphical elements

GUI categories
§  It is possible to identify two extreme

types of GUIs:
• Components’ aggregate
• Direct drawing

§  A mix is often used in practice

Components’
aggregate

Direct drawing

GUI as Components’ aggregate
§  Use predefined UI components

(widgets or controls)
•  E.g. buttons, text fields, labels

§  They manage mostly textual
information
•  Suitable to build an application that could
“theoretically” make it with a textual user
interface

GUI with drawing
§  They directly access the screen

• The tool is represented by the Graphics
interface

• They may use sophisticate API such as
Java2D

§  They manage visual information (e.g.
diagrams, graphs, images)

§  Typically are contained in a JPanel
component

MAIN CONTAINER

Main GUI container
§  Represents the point of interaction

between Java and Operating System
(OS)

§  It may vary:
• JFrame for desktop applications
• Applet for web-enabled components
• Midlet for JavaME (phone) applications
• …

Frame container
§  JFrame is the base class for desktop

graphical applications
§  Provides all the features for an empty

window
• Title bar
•  Standard buttons (Max, Min, Close)
• Resizable border
•  Etc.

JFrame - Example
public class BasicFrame extends JFrame {
 public static void main(String[] args) {
 JFrame f = new BasicFrame();
 f.setVisible(true);
 }
 public BasicFrame(){
 super("A frame..");
 setSize(200,100);
 }
}

What happens
without setSize() ?

Window close
§  Clicking the button or

• Closes the window but
• Does not terminate the application

§  It is required to explicitly define the
operation to be performed in
response to window closure

E.g.
setDefaultCloseOperation(
 JFrame.DISPOSE_ON_CLOSE);

Container Basic Features
§  setDefaultCloseOperation(bhvr): define

the behavior upon window close
• EXIT_ON_CLOSE
• DO_NOTHING_ON_CLOSE
• DISPOSE_ON_CLOSE
• HIDE_ON_CLOSE

§  setSize(int width, int height): defines
the dimensions of the panel outside

Application
§  The main application has to

•  create a container (JFrame)
•  make it visible (starts a new event thread)

public class Minimal extends JFrame {
 public Minimal(){
 setTitle("Minimal UI");
 setSize(200,100);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 }
 public static void main(String[] args) {
 Minimal gui = new Minimal();
 gui.setVisible(true);
 }}

Could be moved
into the ctor

COMPONENTS

Main classes
Class Diagram0 2016/05/25 powered by Astah

 pkg

JComponent

JButton JLabel JPanel JList

JFrame

…

Button: JButton
§  Constructors:

• JButton(); creates a button without a
text (without label)

• JButton(String); creates a button
with a label containing the text.

§  it is a component à inherits all the
methods of classes JComponent
(javax.swing) and component (java.awt) ‏

§  It is a container à inherits all methods of
java.awt.Container

Label: JLabel
§  Constructors

•  JLabel(String); create label with given text,
aligned on the left

•  JLabel(String, int); create label with given
text, aligned:
�  SwingConstants.LEFT
�  SwingConstants.RIGHT
�  SwingConstants.CENTER

§  Available methods:
•  getText(), setText(String)
•  getAlignement(), setAlignement(int)

Text field: JTextField
§  The text fields allows entering strings of

text on a single line
§  Constructors:

•  JTextField(String) initial content
•  JTextField(int) required size in chars
•  …

add(new JTextField());
add(new JTextField("", 20));
add(new JTextField("Hello”));
add(new JTextField("Hello",30));

Text area: JTextArea
§  Manages text on several lines
§  Constructors

•  JTextArea (int lines, int columns)
•  JTextArea (String text, int l, int c)

§  Useful Metods:
•  getText(), setText(String);
•  append(String), insert(String, int);
•  void setLineWrap(boolean)
•  void setWrapStyleWord(boolean)

Scrollpane: JScrollPane
§  JScrollPane is able to add scroll bars

to a scrollable component (e.g.
JTextArea)

§  Constructor:
•  JScrollPane(Component);

§  Example:
•  JScrollPane sp =
 new JScrollPane(
 new JTextArea(longText));

Text field: JList
§  The list show a set of items
§  Constructors:

•  Jlist()
•  JList(Object[] data)
•  JList(ListModel) …

§ Data can be defined  
using method
•  setListData(…)

§  A scroll pane is often required

Checkbox, Options
§  Check boxes : JCheckBox(String, boolean)
§  Option buttons: JRadioButton(String, boolean)
§  Useful methods:

•  void setSelected(boolean)
•  boolean isSelected()

§  Mutual exclusion:
§  Add RadioButton (or CheckBox) to ButtonGroup
§  By default they are non-exclusive

Example
public class Authors extends JFrame{

 JRadioButton[] list = new JRadioButton[4];
 public Authors() {
 super("Select an author");
 setSize(140, 190);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 list[0] = new JRadioButton("Jehoshua", true);
 list[1] = new JRadioButton("McEwan");
 list[2] = new JRadioButton(�Stephenson");
 list[3] = new JRadioButton("Steel");
 JPanel panel = new JPanel();
 ButtonGroup group = new ButtonGroup();
 for (int i = 0; i < list.length; i++) {
 group.add(list[i]);
 panel.add(list[i]);
 }
 setContentPane(panel);
 setVisible(true);
 } public static void main (String args[]) {
 Authors newLista = new Authors(); }

}

Dialog boxes
§  Used for short focused interactions

• Confirmation
•  Input
• Message
• Options

§ Methods more efficient than input/
output in order to read from keyboard

§  Class JOptionPane
•  Several static methods for different types

Dialog for confirmation
§  Every dialog is dependent on a root

Frame component.
•  Example:

JOptionPane.showMessageDialog(frame,
 "This is a message.");

JOptionPane Features
§  Using JOptionPane, you can quickly create

and customize several different kinds of
dialogs. JOptionPane provides support for
laying out standard dialogs, providing
icons, specifying the dialog title and text,
and customizing the button text.

Message dialog types

INFORMATION_MESSAGE

WARNING_MESSAGE

ERROR_MESSAGE

PLAIN_MESSAGE

(default)

Option dialog
§  Presents used with a few choices
String[] options={"Sure","No way","Maybe"};

JOptionPane.showOptionDialog(null,
"A typical question?",
"Question",

JOptionPane.YES_NO_CANCEL_OPTION,

JOptionPane.QUESTION_MESSAGE,null,

Options,

options[1]);

Input dialog

§  String showInputDialog(Component, Object)
§  String showInputDialog(Component, Object,
String, int) ‏
•  Component: in which component appears

window
•  Object: Request message input
•  String: title
•  int: type of message (as in confirmation) ‏

String answer =
JOptionPane.showInputDialog(null,
"Your sweet preferred ?", "answers...",
JOptionPane.QUESTION_MESSAGE);

Full example: visual counter
§ Model: a simple counter

public class Counter {

 private int value;

 public void increment(){
 value++;
 }

 public void decrement(){
 value--;

 }

 public int getValue(){
 return value;
 }
}

Visual Counter - View
public class View extends JFrame {

 private JButton plus;
 private JLabel value;
 private JButton minus;

 private Counter model;

 public View(Counter c,
 Controller controller){

 … }

 public void update(){

 … }
}

Model

Visual Counter – View
public class View extends JFrame {

public View(Counter c, Controller controller){

 setTitle("A Counter");
 setSize(150,150);
 setLayout(new BorderLayout());

 plus = new JButton("+");
 this.add(plus,BorderLayout.NORTH);

 minus = new JButton("-");
 this.add(minus,BorderLayout.SOUTH);

 value = new JLabel("?");
 value.setHorizontalAlignment(JLabel.CENTER);
 this.add(value,BorderLayout.CENTER);

 setVisible(true);

NORTH

CENTER
W
E 
S
T

E
A
S
T

SOUTH

Visual Counter – View
 setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 model = c; // MODEL

 plus.addActionListener(controller);

 minus.addActionListener(controller);

 controller.setView(this); // CONTROLLER --> VIEW

 update();

}

public void update(){

 String v = Integer.toString(model.getValue());

 value.setText(v);

} Model

Visual Counter – Controller
public class Controller
 implements ActionListener {
 private Counter model;
 private View view;

 public Controller(Counter m){ model = m; }

 public void actionPerformed(ActionEvent e){
 if(e.getActionCommand().equals("+")){
 model.increment();
 else
 model.decrement();
 view.update();
 }

 public void setView(View finestra) {
 view = finestra;
 }
}

Model

LAYOUT

Layout managers
§ Determine the size and position of the

components within a container
• Manage resize of containers
• Accounts for differences in OSs and font

sizes
§  setLayout(LayoutManager m);
§  Absolute positioning is possible

• setLayout(null);
• setBounds() for each component

Flow Layout
§  From left to right, starting from the left upper corner
§  Constructors:

•  FlowLayout();
•  FlowLayout(int align);
•  FlowLayout(int align, int hgap, int vgap);

§  Parameters:
•  align: Alignment of basis (FlowLayout.LEFT,
FlowLayout.RIGHT, FlowLayout.CENTER) ‏

•  hgap: Horizontal space between components (default: 3
px) ‏

•  vgap: Vertical space between components (default: 3 px) ‏

Example of FlowLayout

(FlowLayout.RIGHT) ‏

(FlowLayout.CENTER,20,20) ‏

Grid Layout
§  Splits the screen in a grid of rows and columns
§  Filling: starts from the box in the top left and then by line
§  Constructors:

•  GridLayout(int rows, int cols)
•  GridLayout(int rows,int cols,int hgap,int vgap)

§  Parameters:
•  rows: number of row;
•  cols: number of columns;
•  hgap: Spacing (in pixels) between two horizontal boxes

(default: 0 pixel) ‏
•  vgap: spacing (in pixel) between two vertical boxes

(default: 0 pixel) ‏

Example of GridLayout
4 row, 1 columns:

distance 0

2 row, 2 columns:
distance 0 pixel

2 row, 2 columns:
distance 10 pixel

(Distanza min = 0)‏

(Min distance = 10)‏

BorderLayout
§ Divide the container into five areas

• 4 in the border 1 in the center

setLayout(new BorderLayout());

add("North",new JButton("NORTH"));

add("South",new JButton("SOUTH"));

add("East",new JButton("EAST"));

add(new JButton("WEST"),BorderLayout.WEST);

add(new JButton("CENTER"),BorderLayout.CENTER);

Grid bag layout
§  Extension of the grid layout (GridLayout) ‏

•  elements of the grid can be adjusted with
mechanisms of personalization

§  Usage:
•  Create GridBagLayout object
•  Create ‘constraint’ object

(GridBagConstraints)
•  For each component ‏

- Define the adjustment
- Register the component-constraint link with the

manager
•  Add the component to the container

Example
§  Structure required to render a simple

login window such as:

GridBagConstraints details
JLabel JTextField

JTextField JButton

(0,0) (1,0)

(0,1) (1,1)

(0,2)

JLabel

Rules expressed as constraints
§  Components are placed in the cells at

position (x, y) ‏
§  "OK" button must occupy two cells:

the other components are in a single
cell

§  breadth of the components is variable
(the label "name" occupies about 30%
of line…)

§  Cells are positioned (the "OK" button
is centered, etc.)

Rules on GridBagConstraints (2)‏
§ GridBagConstraints has the fields:

•  gridx - The initial gridx value.
•  gridy - The initial gridy value.
•  gridwidth - The initial gridwidth value.
•  gridheight - The initial gridheight value.
•  weightx - The initial weightx value.
•  weighty - The initial weighty value.
•  anchor - The initial anchor value.
•  fill - The initial fill value.
•  insets - The initial insets value.
•  ipadx - The initial ipadx value.
•  ipady - The initial ipady value.

Regulation on GridBagConstraints (3)‏
§  The values of fill are : BOTH, NONE, HORIZONTAL,
VERTICAL

§  The values of anchor are: CENTER, NORTH,
NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST,
WEST, NORTHWEST

§  Therefore… GridBagLayout grid = new GridBagLayout();
pannel.setLayout(grid);
GridBagConstraints Gbc = new GridBagConstraints();
JLabel label1 = new JLabel (“Name:”, JLabel.LEFT);

 Gbc.gridx = 0;
 Gbc.gridy = 0;
 Gbc.gridwidth = 1;
 Gbc.gridheigth = 1;
 Gbc.weightx = 30;
 Gbc.weigthy = 40;
 Gbc.fill = GridBagConstraints.NONE;
 Gbc.anchor = GridBagConstraints.EAST;

grid.setConstraints(Gbc, label1);
pannello.add(label1);

JAVA EVENTS

Event Delegation Model
§  Since Java1.1

•  Events are classified by type
(MouseEvent, KeyEvent, etc.)

•  Events are generated in components
sources

• An object can be registered as handler
(listener) of a type of event by sending a
message to the component source

Event Delegation Model
§ Whenever an event occurs, the UI

thread sends a message to all the
registered listener objects (the event
descriptor is passed as a parameter)

§  A listener object must implement the
appropriate interface (to allow the
call-back)

aClass

java.util.EventListener

implements

aComponent

Listener Event Source

send_events_to

Multiple listeners
can register to be
notified of events
of a particular type
from a particular
source. Also, the
same listener can
listen to
notifications from
different objects.

Event Delegation Model

Events
§  The events are represented by a

hierarchy of classes. Each class is
defined by the data representing that
type of event.

§  Some of the classes that are a set of
events (MouseEvent) MAY CONTAIN
AN ID that identifies the exact event
type.

A Button

addActionListener(Object) ‏

ListenerObject

actionPerformed
(ActionEvent) ‏

addActionListener(ListenerObject) ‏

actionPerformed(AnActionEvent) ‏

An ActionEvent

Click

1
2

3

4

new

Example events

Source Event
Button ACTION events à when the button is push

Box of choice ELEMENT events à select/deselect

Menu ACTION event à when you select a menu
item;
ELEMENT event à when a selectable menu
item is activated

Window WINDOW events à when the window is
activated, maximized, minimized,...

…

Events in Java: sources and types

Difference between ‘selection - activation’

Activation à event of
element

selection à event of
action

Management of the events
§  Events covered in Java :

§  Action event à click a button
§  Adjustment event à actions on scroll bars
§  Focus event à point the mouse on a text field
§  Item event à click on RadioButton, CheckBoxButton
§  Key event à keyboard input
§  Mouse event à click (not covered above)
§  Mouse-motion event à Simple displacement of the

mouse
§  Window event à Enlarge, close a window

Managing events
§  The principle underlying the events is quite

similar to the exceptions :
•  A class declares which event is able to deal with

(one or more) à implements one or more
interfaces

•  It joins the listener set of the components that
are source of events (JButton, JTextField,
etc..) à
aButton.addActionListener(controller)
-  Pay attention! You're implementing interfaces, so you

must overwrite all methods of those interfaces!

class FrameWithEvents extends JFrame implements
InterfaceWithEvents {

 JComponent componentSourceofEvents =

 new JComponent();

 componentSourceOfEvents.addListener(this);

 void methodOfTheInterfaceWithEvents() {…}

 void anotehrMethodOfTheInterfaceWithEvents() {…}

}//end class

How to manage the events in Java

Listener Interfaces (1)
§  ActionListener à Methods to

override :
•  void actionPerformed (ActionEvent evt) ‏

§  FocusListener à Methods to
overwrite :
• void focusGained (FocusEvent evt)
• void focusLost (FocusEvent evt)

§  ItemListener à Methods to rewrite :
•  void itemStateChanged (ItemEvent e)

Listener Interfaces (2) ‏
§  MouseListener Methods to override:

•  void mouseClicked (MouseEvent evt)
•  void mouseEntered (MouseEvent evt)
•  void mouseExited (MouseEvent evt)
•  void mousePressed (MouseEvent evt)
•  void mouseReleased (MouseEvent evt)

§  MouseMotionListener Methods to
overrid:
•  void mouseDragged (MouseEvent evt)
•  void mouseMoved (MouseEvent evt)

Listener Interfaces (3) ‏
§  KeyListener Methods to override:

•  void keyPressed (KeyEvent evt)
•  void keyReleased(KeyEvent evt)
•  void keyTyped(KeyEvent evt)

§  WindowListener (Methods to override:
•  void windowActivated(WindowEvent evt)
•  void windowClosed (WindowEvent evt)
•  void windowClosing (WindowEvent evt)
•  void windowDeactivated (WindowEvent evt)
•  void windowDeiconified (WindowEvent evt)
•  void windowIconified (WindowEvent evt)
•  void windowOpened (WindowEvent evt)

Add a listener
§  Separate controller object
button.addActionListener(controller);

§  Lambda expression relaying call
button.addActionListener(e -> doClick());

§  The container itself (e.g. JFrame)
button.addActionListener(this);

Handle the event
§  Identify the source of events

• May be implicit in the anonym dispatcher
Object ob = evt.getSource();
if (ob == button){

 // perform event handling

}

§  Use event additional information
•  E.g. mouse position

Note: ==
reference

comparison

Handle the event
§  All methods accept an event as argument

•  The argument (KeyEvent, MouseEvent, etc.) ‏
provides methods to get information about the
event:

§  Examples
•  ActionListener

-  String getActionCommand(): returns a string
identifying the component which generated the
command

-  String paramString(): returns a string describing
the event type (common to all event objects) ‏

Event methods
§  ItemEvent:

•  int getStateChange(): return SELECTED
or DESELECTED on whether the
RadioButton or the CheckBox is turned or
less

§  KeyEvent:
•  char getKeyChar(): returns the character

typed
•  int getKeyCode(): returns the code of the

key pressed o released

Homework
§  Write a program Calcolator.java that realizes the functionality

of a simple calculator. Requirements of the graphics
interface:
•  10 buttons with the figures from 0 to 9 prepared as in a

traditional calculator;
•  Buttons relating to the operations of sum, subtraction,

multiplication and division;
•  button “CE” To cancel the last number wrought ;
•  button “C” To clear any operation ;
•  button“=” To claim the result ;
•  button “.” To insert decimal places;
•  label to represent the display the calculator.

Observation
§  Model the behavior of a "simple" Pocket calculator is

not a simple activity : in order to make this exercise not
too heavy from the point of view of the algorithms, you
can simplify the following algorithm of calculation of
arithmetic expressions introduced with the following
hypotheses:
•  The expressions involve always and only 2 operandi ;
•  The user inserts always and only the first working

operator, then the second working and the key "=";
the result becomes the first working operator for the
next operation

•  The only exception to the rule (2) is the case for
buttons "C", "EC" AND "off" that can be pressed at
any time.

Algorithm of management (1) ‏
state = NO_OPERATOR
buffer = 0
For each button pressed :

 if the state is NO_OPERATOR then
 If the button pressed is a figure then
 queues to buffer the figure
 view the buffer
 If the button pressed is a sign then
 operator1 = buffer
 operand = sign
 buffer = 0
 state = AN_OPERATOR
 if the button pressed is C or CE
 buffer = 0
 view the buffer
 otherwise, if the State is AN_OPERATOR then
 If the button pressed is a figure then
 queues to buffer the figure
 view the buffer
 If the button pressed is “=” then
 operator2 = buffer
 Calculate the term operatore1, a sign, operatore2 and visualize

 buffer = 0
 state = NO_OPERATOR

?

Algorithm of management
If the button pressed is C
 buffer = 0
 view the buffer
 state = NO_OPERATOR

If the button pressed is CE
 buffer = 0
 view the buffer

GUI TESTING

GUI testing
§  To execute a test of a GUI there are

two possible approaches:
• Test from outside
• Test from within

78

79

Test from outside
§  Test from outside

•  Through the Operating System events
are sent to the application emulating the
user behavior

•  Pro: realistic approach
•  Cont: complex, OS dependent
•  There are specific tools that are able to

capture operations performed by a user
and to replay them later

80

Test from within
§  Test from within

•  Specific methods can be invoked on
graphical component to achieve a similar
effect to that of a real usage (e.g.
doClick() on a button)

•  Pro: simple, OS independent
•  Con: not realistic, not full interaction
•  Con: classes must be designed for

testability
- E.g. let selected attribute visible

GUI Test - Example
public void testGUI(){
 SimpleCassa gui = new SimpleCassa();
 gui.setVisible(true);
 gui.input.setText("P001");
 gui.pulsante.doClick();
 gui.input.setText("P002");
 gui.pulsante.doClick();
 gui.input.setText("P001");
 gui.pulsante.doClick();
 gui.input.setText("CLOSE");
 gui.pulsante.doClick();
 String output = gui.output.getText();
 assertTrue("wrong output",
 output.indexOf(”Sum: 7.5")>-1);
}

81

GRAPHICS

Direct drawing
§ Two elements are required to draw
directly :
• Method void paint(Graphics g)
- Must be redefined in derived classes
- Invoked by O.S.

• Class Graphics
- Provides methods to draw

83

Class Graphics
§  Is the class that supports the capacity

graphics applications, which draw lines,
forms, characters and present images on
screen, by means of a series of methods .

§  The method paint() provides an object
graphics acting on which draws on the
screen.
•  It isn’t necessary to create an instance of the

class graphics to draw on the screen

Class Graphics
§  The coordinate system:

• Origin in the top left corner
• X increase moving to the right
• Y increase moving downwards

x

y

Graphics methods: lines
§  drawLine(x1,y1,x2,y2)

• Draw a line between two points
§  drawRect(x,y,width,height)

• Draw a rectangle (x,y) is upper left corner
•  Size is defined by width and height

§  fillRect()
•  Same as above but rectangle is solid

filled

Graphics methods: rectangles
§  drawRoundRect(x, y, width, height,
arcWidth, arcHeight)
•  Draw a rectangle with rounded angles

§  fillRoundRect(x, y, width, height,
arcWidth, arcHeight)
•  Same as above but with solid filled shape

arcHeight

arcWidth

Graphics methods: ellipses
§  drawOval(x,y,width,height)

•  Draw an ellipse inscribed in a rectangle located at
(x,y) with the given size

§  drawArc(x,y,width,height,start,stop)
•  Draw an arc of an ellipse starting at start degrees

and stopping at stop degrees
§  Also available:

•  fillOval()
•  fillArc()

start
stop (x,y)

height

width

Graphics methods: strings
§  drawString(str,x,y)

• Draw a string starting at point (x,y)
§  drawChars(chars, offset,
length, x, y)
• Draw a char array starting at point (x,y)
• Offset is the first char to draw
•  Length is the number of chars to draw

The string
(x,y)

Draw lines and squares
§  To draw a line

g.drawLine(25, 25, 75, 75);
§  To Draw a rectangle, specifying the

coordinated point in the top left, width and
length:
g.drawRect(20, 20, 60, 60);
g.fillRect(120, 20, 60, 60);

§  To Draw a rectangle, specifying the
coordinated point in the top left, width and
length:
g.drawRoundRect(20,20, 60,60, 10,10);
g.fillRoundRect(120,20, 60,60, 20,20);

Draw polygons
§  A polygon requires a set of points defined

as two x and y arrays:
int x[] = {39,94,97,142,53,58, 26};
int y[] = {33,74,36,70,108,80, 106};
int points = x.length;
g.drawPolygon(x,y,points);

§  ..or as instances of the class polygon:
Polygon poly = new Polygon(x,y,points);
g.fillPolygon(poly);

§  The polygon is closed automatically
drawPolyline() allows to have open polygons.

Draw ellipses and arcs
§  To draw circles or ellipses using the oval .

g.drawOval(20, 20, 60, 60);
g.fillOval(120, 20, 100, 60);

§  Arcs are defined as pieces of ellipses with
the method drawArc()
•  An ellipsis must be defined plus the starting and

ending angles. Which are defined
counterclockwise (90 vertical axis).

g.drawArc(20, 20, 60, 60, 90, 180);
g.fillArc(120, 20, 60, 60, 90, 180);

Draw strings
§  To draw strings use:

g.drawString("Hello", 50, 50);

§  ..or draw an array of chars:
char[] chars = new char[]
{'A','B','C','.','Z'};
g.drawChars(chars,0,chars.length,80,70);

Examples

Repaint
§ Method paint() is invoked by OS

when needed
•  E.g. window resize, de-iconify

§ Method repaint() signals that
window contents must be updated
•  Later OS will invoke paint()

§  This method is essential to update the
view when something is changed

Color management
§  The management of colors is

performed through class Color.
• Colors are encoded on 24 bit; each color

and consists of a combination of red,
green and blue .

•  Each component is represented with a
whole number between 0 and 255.

§  There are class constants defined for
the main colors.

Color management
§  For windows (JFrame):

• setBackground(Color c)
- Sets the window internal background

• setForeground(Color c)
- Sets the components foreground color

§  For Graphics:
• setColor(Color c)
- Sets the color for all the successive drawing

operations

Color management

Font management
§  Fonts are represented by class Font
§  Constructor

Font(String face, int attrs, int size)

§  Parameters
•  Face is the name of the font e.g.

“TimesRoman”
• Attrs represent attributes e.g. Font.BOLD
•  Size is expressed in points

Font management
§  To get information about a font:
•  getFont(): returns the current font
•  getName(): returns font name
•  getSize(): returns the font size
•  getStyle():, Return the style of font
•  isPlain() :()isItalic‏ , ()isBold ,‏

return the font modifications
§  For more information more specific

on the individual font use the class
FontMetrics.

FontMetrics
§ Main methods are:

• stringWidth(): width in pixels of a
given string

• charWidth(): amplitude of a char
• getAscent()
• getDescent()
• getLeading()
• getHeight()

Ag Baseline

Leading

Ascent

Descent

Height

Example

102

Example

103

public class Drawing extends JFrame{
 int x;
 int y;
 public void paint(Graphics g){
 Rectangle b = getBounds();
 g.setColor(Color.RED);
 g.drawRoundRect(4,30,
 b.width-9,b.height-35,50,50);
 g.setColor(Color.BLUE);
 g.drawOval(x,y,10,10);
 g.setColor(Color.GREEN);
 g.fillOval(x+1,y+1,9,9);
 }
}

g covers the full
window area,

including borders

Events

104

public class Drawing implements KeyListener{
 public void keyPressed(KeyEvent e) {
 if(e.getKeyCode()==KeyEvent.VK_DOWN){
 moveXY(0,5);
 }
 // …
 }
 void moveXY(int deltaX, int deltaY){
 x+=deltaX;
 y+=deltaY;
 this.repaint();
 }
}

Considerations

105

§  The repaint operation does not erase
the window
• Therefore we have the trail effect

§ We need to explicitly erase the content
of the window:
Rectangle bounds = getBounds();
g.clearRect(0,0,bds.width,bounds.height);

Advices
§  Define a method paint on an empty

(e.g. without borders) compoment
§  DO NOT override method paint()

on a frame containing components
§  Usually a JPanel is a good

candidate to override method
paint()

106

Summary
§  GUI can be build using the MVC pattern:

• Model: hosts the data
•  View: show the data
•  Controller: manages the interaction

§  The view can be build using different
libraries:
•  AWT
•  Swing
•  JavaFX

Summary
§  In Swing the main elements are

•  JFrame that represent the view container
•  JComponent is the root class of all

controls:
- JButton
- JLabel
- JTextField
- JPanel
- …

Summary
§  The interaction takes place when an

event is generated and managed by
the appropriate listener
• A listener must be registered for a

component and a specific event category
• When the event is generated the

appropriate method of the listener is
called back

• The method can handle the event as
required

