
Java Threads

Version 2.2.1 - May 2018

© Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Licensing Note
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial

purposes.

§  No Derivative Works. You may not alter, transform, or build upon
this work.

§  For any reuse or distribution, you must make clear to others the

license terms of this work.
§  Any of these conditions can be waived if you get permission from the

copyright holder.

Your fair use and other rights are in no way affected by the above.

What Are Threads?

§  General-purpose solution for managing
concurrency

§  Multiple independent execution streams
§  Shared state

Shared state
(variables , files)

Threads

What Are Threads Used For?
§  Operating systems

•  one kernel thread for each user process.
§  Scientific applications

•  one thread per CPU (solve problems faster).
§  Distributed systems

•  process requests concurrently (overlap I/Os).
§  GUIs

•  Threads correspond to user actions; they
can help display during long-running
computations.

•  Multimedia, animations.

Process
§  From an OS viewpoint, a Process is an

instance of a running application
§  Has it own

•  virtual address space
•  code,
•  data,
•  other OS resources (e.g. files)

§  A process also contains one or more
threads that run in the context of the
process.

Thread
§  A thread is the basic entity to which the

operating system allocates CPU time.
§  A thread can execute any part of the

process code
•  Including a part currently being executed by

another thread.
§  All threads of a process share the same

virtual address space, global variables,
and operating system resources.

Multitasking
§  User: capability to have several

applications open and working at the
same time.
•  A user can edit a file with one application

while another application is printing or
recalculating a spreadsheet.

§  Developer: capability to create processes
that use more than one thread of
execution, e.g.
•  One handles interactions with the user
•  Another performs background work

Multitasking
§  A multitasking OS assigns CPU time

(slices) to threads
§  A preemptive OS executes a thread until

•  Its assigned time slice is over,
•  It ends its own execution,
•  It blocks (synchronization with other

threads)
•  A thread with higher priority becomes

available
§  Using small time-slices (e.g. 20 ms) the

thread execution is apparently parallel
•  Actually parallel in multiprocessor systems

Multitasking Problems
§  O.S. consumes memory for the structures

required by both processes and threads.
•  Keeping track of a large number of threads also

consumes CPU time.
§  Multiple threads accessing the same

resources should be synchronized to avoid
conflicts (deadlocks or race conditions)
•  System resources (communications ports, disk

drives),
•  Handles to resources shared by multiple

processes (files)
•  Resources of a process (variables used by

multiple threads)

JVM and Operating System
§  Do not interpret the behavior on one

machine as “the way usually threads
work”

§  Design a program so that it will work
regardless of the underlying JVM.

§  Thread programming motto:
When it comes to threads,

very little is guaranteed

JVM Scheduler
§  The Scheduler is the JVM part that

decides
•  Which thread should run at any given time,
•  Takes threads out of the running state.
•  Some JVMs use O.S. scheduler (native

threads)
§  Assuming a single processor machine:

•  Only one thread can actually run at a time.
§  The order in which runnable threads are

chosen to be THE ONE running is NOT
guaranteed.

Create a thread
§  Threads can be created by extending
Thread and overriding the run()
method.

§  Thread objects can also be created by
calling the Thread constructor that
takes a Runnable argument (the
target of the thread)
•  The same Runnable object can be the

target of different Thread objects

Create a Thread
1.  Extends Thread class

class X extends Thread {
 public void run() { //code here }

}
Thread t = new X();
t.start(); // Create and start

2.  Implementing Runnable interface (better)
class Y implements Runnable {
 public void run() { //code here }
}
Thread r = new Thread (new Y());
r.start(); //invoke run() & create new call-stack

Start a Thread
§  When a Thread object is created, it does

not become a thread of execution until
its start() method is invoked.

§  When a Thread object exists but hasn't
been started, it is in the New state and it
is not considered alive.

§  Method start() can be called on a
Thread object only once.
•  If it is called more than once on same object,

it will throw a RuntimeException

Starting a thread
main

public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

Starting a thread
main

main()

public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

Starting a thread
main

main()

public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

Starting a thread
main

main()
m()

public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

Starting a thread
main

main()
m()

t

Non-deterministic
area ahead

!

public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

Starting a thread
public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

main

main()
m()

t

run()

Starting a thread
public class Starting {
 public static void main(String[] args) {
 m();
 }
 static void m(){
 Thread t = new MyThread();
 t.start();
 sayHello("main");
 }
 static void sayHello(String a){
 System.out.println(a+": Hello!");
 }
 static class MyThread extends Thread{
 public void run(){

 sayHello("t");
 }
 }
}

main

main()
m()

sayH()

t

run()
sayH()

Example: extends Thread
§  Two threads, each counting up to N
class Counter extends Thread {
 private int num; String name;
 public Counter(String nn, int n) {
 name= nn; num = n; }
 public void run(){
 for(int i=0; i<num; ++i)

 System.out.print(name+": "+i+" ");
 }
} public static void main(String args[]){

Counter t1 = new Counter("Kevin",10);
 Counter t2 = new Counter("Bob",5);
 t1.start(); t2.start();
}

Ex. implements Runnable
class CounterR implements Runnable {
 private int num; private String lab;
 public CounterR(String l, int n) {
 num = n; lab = l; }
 public void run(){
 for(int i=0; i<num; ++i)
 System.out.print(lab+": "+i+" ");
} }
public static void main(String args[]){
 Thread t1,t2;
 t1 = new Thread(new CounterR("Kevin",10));
 t2 = new Thread(new CounterR("Bob",5));
 t1.start(); t2.start();
}

Ex. Runnable lambda
public static void main(String args[]){
 Thread t1,t2;
 final int num1 = 10;
 t1 = new Thread(() -> IntStream.range(0,num1)
 .mapToObj(i->"Kevin: ",i+" ")
 .forEach(System.out::print);
);

 final int num2 = 5;
 t2 = new Thread(() -> IntStream.range(0,num2)
 .mapToObj(i->"Bob: ",i+" ")
 .forEach(System.out::print);
);

 t1.start();
 t2.start();
}

Ex. Runnable factory w/λ
static Runnable counting(String l, int num){
 return () -> IntStream.range(0,num)
 .mapToObj(i->l+": "+i+" ")
 .forEach(System.out::print);
}

public static void main(String args[]){
 Thread t1,t2;
 t1 = new Thread(counting("Kevin",10));
 t2 = new Thread(counting("Bob",5));
 t1.start();
 t2.start();
}

EXECUTORS

Executors
§  When multiple tasks have to be

performed a few issues exist:
•  Thread creation and starting
• Control number of concurrent threads
• Queuing tasks
•  Stop all the running tasks

§  Executor services can be used to
simplify such operations
•  java.util.concurrent

ExecutorService
§  submit()

•  Submits a new task to the service
§  shutdown()

• Awaits for task to terminate and then
stops the service

§  shutdownNow()
•  Terminates tasks and the service

§  awaitTermination()
• Awaits shutdown to terminate service

Create executor services
§  Using class Executors static methods

•  newCachedThreadPool()
� Creates as many threads a needed and reuse

them
•  newFixedThreadPool()
� Creates fixed size thread pool

•  newSingleThreadExecutor()
� Creates a single thread

•  newWorkStealingPool()
� Creates as many threads to match the

available number of processors

Tasks
§  Runnable

• Method void run()
§  Callable<T>

• Method T call()
•  Submit returns a Future<T>
� isDone() checks if the computation is

completed and the value availbale
� get() blocks until a value is returned (or a

timeout expires)

Executor Example
ExecutorService deepThought =

 Executors.newCachedThreadPool();
Callable<Long> lifeUniverseEverything = () -> {

 Thread.sleep(SEVEN_HALF_MY);
 return 42; };

Future<Long> answer = deepThought
 .submit(lifeEverything);

try {
 Integer theAnswer = answer.get(); // blocks
 System.out.println(”Answer: " + theAnswer);
} catch (Exception e) {
 e.printStackTrace(); }

JAVA THREAD STATES

Running Multiple Threads
§  There is no guarantee that:

§  threads will begin execution in the order
they were started

§  a thread keeps executing until it's done
§  a loop completes before another thread

begins
§  Nothing is guaranteed except:

Each thread will start, and each thread will
run to completion, hopefully.

Waiting
Sleeping
Blocked

Waiting
Sleeping
Blocked

Java Thread States (simplified)

start() run() ends

new
Thread

JVM
scheduler

sleep()
wait()
join()

notify()
interrupt()

Waiting
Sleeping
Blocked

New Runnable Running Terminated

RUNNABLE

TIMED_ 
WAITING WAITING

Java Thread States

start() run() ends
new

Thread
scheduler

interrupt()

BLOCKED

NEW Ready TERMINATED Running

notify() sleep() wait()
join()

acquire
lock

lock
acquired

yield()

Thread state: Runnable
§  A thread is either

•  queued & eligible to run, but waiting for
the CPU time

•  Running on the CPU
§  A thread first enters the Runnable

state when the start() method is
invoked

§  A thread can also return to the
Runnable state coming back from a
blocked, waiting, or sleeping state

Thread Priorities
§  A thread always runs with a priority number
§  The scheduler in most JVMs uses

preemptive, priority-based round-robin
scheduling

§  Usually time-slicing is used:
•  Each thread is allocated a fair amount of time
•  After that a thread is sent back to the ready

queue to give another thread a chance
§  JVM specification does not require a VM to

implement a time-slicing scheduler!!!

JVM Scheduling Policy
§  Non-Preemptive: current thread is executed until the end,

unless thread explicitly releases CPU to let another thread
take its turn
•  used in real-time apps (interruption can cause problems)

§  Preemptive time-slicing: thread is executed until its time-
slice is over, then the JVM suspends it and starts another
runnable thread
•  Simpler development, as all resources handled by JVM
•  Apps do not require to use yield() to release resources

§  High priority threads:
•  Are executed more often, or have longer time-slice
•  Stop execution of lower-priority threads before their

time-slice is over

Setting a Thread’s Priority
§  By default, a thread gets the priority of

the thread of execution that creates it.
§  Priority values are defined between 1

and 10
 Thread.MIN_PRIORITY (1)
 Thread.NORM_PRIORITY (5)
 Thread.MAX_PRIORITY (10)

§  Priority can be directly set
 FooRunnable r = new FooRunnable();
 Thread t = new Thread(r);
 t.setPriority(8); t.start();

yield

§  The method yield() sets the
currently running thread back to
Runnable state
•  It allows other threads of the same

priority to get their turn
•  yield() might have no effect at all

• There's no guarantee the yielding thread
won't just be chosen again over all the others

Thread state: Timed waiting
§  A thread may be sleeping because
 the thread's run() code tells it to
sleep for some period of time,

§  It gets back to Runnable state when it
wakes up because its sleep time has
expired
try {
 Thread.sleep(5*60*1000);
 // Sleeps for 5 min
} catch (InterruptedException ex) { }

Example sleep
class NameRunnable implements Runnable {
public void run() {
 for (int x = 1; x < 4; x++) {
 System.out.println("Run by "+
 Thread.currentThread().getName());
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) { }
} } }

public class ManyNames {
public static void main (String [] args) {
NameRunnable nr = new NameRunnable();
Thread one = new Thread(nr,"Kevin");
Thread two = new Thread(nr,"Stuart");
Thread three = new Thread(nr,"Bob");
one.start(); two.start(); three.start();
} }

Thread state: Waiting
§  The thread asked to wait for a signal

from another thread
§  It comes back to Runnable state when

another thread
•  Terminates and the current tread asked

to join (join())
•  Sends a notification (notify()) that this

thread waiting for (wait())
§  Used for thread coordination

join

§  The join() method lets a thread "join onto
the end� of another thread
Thread t = new Thread();
t.start();
t.join();

§  The current thread moves to the Waiting
state and it will be Runnable when thread t
terminates

§  An optional timeout can be set
t.join(5000);

Thread state: Blocked
§  A thread is waiting for acquiring a

mutually exclusive access to a
resource that is currently owned by
another thread

§  The thread returns to Runnable state
when the lock on the resource is
released by the other thread

Interrupting a thread
§  A thread cannot be forced to stop!

•  The stop() method is deprecated
§  Method interrupt() can be used to

“suggest” a thread to stop execution
§  When a thread is in Sleep/Wait state

and its interrupt() method is
invoked the method throws an
InterruptedException

Handling an interruption
Thread t = new Thread(new ()->{
while(true){
 try {
 System.out.print(".");

 Thread.sleep(1000);
 }catch(InterruptedException e){

 System.out.println("|STOP|");
 return;

 }
}
});

Perform the
usual task

On interruption clean up
and terminate thread

A word of advice
§  Some methods may look like they tell

another thread to block, but they don't.
§  If t is a thread object reference, you can

write something like this:
 t.sleep() or t.yield()

§  They are static methods of the Thread
class:
•  they don't affect the instance t !!!
•  instead they affect the thread in execution
•  That’s why it's a bad idea to use an instance

variable to access a static methods

SYNCHRONIZATION

Example scenario
§  What happens when two different

threads are accessing the same data ?
§  Imagine two people each having ATM

cards, both linked to the same
account.

class Account {
private int balance = 50;
public int getBalance() {
 return balance;
}
public void withdraw(int amount){
 balance = balance - amount;
} }

Example scenario (II)
§  Two steps are required for performing

a withdrawal:
1. Check the balance
2. If there is enough money in the account,

execute the withdrawal
§  What happens if some times passes

between step 1 and step 2?
§ …while another card holder is attempting

the same task?

Example scenario (III)
§  Marge checks the balance and there is enough (10)
§  Before she withdraws money, Homer checks the balance

and also sees that there's enough for his withdrawal.
§  He is seeing the account balance before Marge actually

debits the account…
§  Both Marge and Homer believe there's enough to make

their withdrawals !
§  If Marge makes her withdrawal…
§  …there isn't enough in the account for Homer's

withdrawal
§  … but he thinks there is since when he checked, there

was enough!

Example: code
class DangerousWithdraw implements Runnable {
private Account account = new Account();
public static void main (String [] args) {
 DangerousWithdraw r = new DangerousWithdraw();
 Thread one = new Thread(r, "Kevin");
 Thread two = new Thread(r, "Bob");
 one.start(); two.start();
}
public void run() {
 for (int x = 0; x < 5; x++) {
 makeWithdrawal(10);
 if (account.getBalance() < 0)
 System.out.println("account is overdrawn!");
} }

Example: code
private void makeWithdrawal(int amount) {
if (account.getBalance() >= amount) {
 System.out.println(Thread.currentThread().getName() +
 " is going to withdraw");

 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 account.withdraw(amount);
 System.out.println(Thread.currentThread().getName()+
 " completes the withdrawal");
} else {
 System.out.println("Not enough in account for "+

Thread.currentThread() .getName()+ "to withdraw "+
account.getBalance());

} } }

Race Condition
§  A problem happening whenever:

• Many threads can access the same
resource (typically an object's instance
variable)

•  This can produce corrupted data if one
thread "races in" too quickly before
another thread has completed its
operation.

Preventing Race Conditions
§  The individual steps that constitute

the operation should be never split
apart.

§  It must be an atomic operation:
•  It is completed before any other thread

can operate on the same resource
• …regardless of the number or duration

of individual steps

Preventing Race Conditions
§  You can't guarantee that a single thread

will stay running during the atomic
operation.

§  But even if the thread running the atomic
operation moves in and out of the
running state, no other running thread
will be able to act on the same data.

§  How to protect the data:
•  Mark the variables as private
AND
•  Synchronize the code accessing the variables

Synchronization in Java
§  The modifier synchronized

•  can be applied to a method or a code block
•  locks a code block: only one thread can

access it at a given time
void synchronized m1(){
 // synchronized context
}

void m2(){
 // normal (un-synchronized) context
 synchronized(anObject){
 // synchronized context
 }}

Synchronization in Java
§  The modifier synchronized

•  can be applied to a method or a code block
•  locks a code block: ONLY ONE thread can

access

• Adding a word and example problem is solved!

private synchronized void makeWithdrawal(int amt)

Homer is going to withdraw
Homer completes the withdrawal
Marge is going to withdraw
Marge completes the withdrawal
Homer is going to withdraw
Homer completes the withdrawal
Marge is going to withdraw
Marge completes the withdrawal

Homer is going to withdraw
Homer completes the withdrawal
Not enough in account for Marge to withdraw 0
Not enough in account for Homer to withdraw 0
Not enough in account for Marge to withdraw 0
Not enough in account for Homer to withdraw 0
Not enough in account for Marge to withdraw 0

Synchronization and Monitor
§  Every object in Java has a built-in monitor
§  Before a thread can enter a synchronized

context it must first acquire the lock of the
object’s monitor.

§  Once a thread acquires a lock it owns it until it
release the lock

§  Only one thread at a time can own a lock
•  If the lock is owned any thread attempting to acquire

the lock is blocked until the lock has been released
•  Once a thread owns a lock on an object, no other

thread can enter any of the synchronized methods in
that object.

§  When a thread exits a synchronized context it
releases the lock

Synchronization and Monitor
§  Not all methods in a class need to be

synchronized.
•  Multiple threads can still access the class's non-

synchronized methods
•  Methods that don't access the critical data, don’t

need to be synchronized
§  A thread going to sleep, doesn't release locks
§  A thread can acquire more than one lock, e.g.

•  A thread can enter a synchronized method
•  Then invoke a synchronized method on another

object

Synchronize a code block

Is equivalent to this:

public synchronized void doStuff() {
 System.out.println("synchronized");

}

public void doStuff() {
 synchronized(this) {
 System.out.println("synchronized");
 }
}

Synchronize a static method

Is equivalent to this:

public static synchronized int getCount(){
 return count;
}

public static int getCount() {
 synchronized(MyClass.class) {
 return count;
} }

MyClass.class represents asingle lock on the
class which is different from the objects� locks

When to Synchronize?
§  Two threads executing the same method

at the same time may:
•  use different copies of local vars => no

problem
•  access fields that contain shared data

§  To make a thread-safe class:
•  methods that access changeable fields need

to be synchronized.
•  Access to static fields should be done from

static synchronized methods.
•  Access to non-static fields should be done

from non-static synchronized methods

Example
public class NameList {
private List names =
 Collections.synchronizedList(
 new LinkedList());
public void add(String name) {
 names.add(name);
}
public String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else return null;
} }

Returns a List whose
methods are all synchronized

and "thread-safe"

Example (II)
class NameDropper extends Thread {
 public void run() {
 String name = nl.removeFirst();
 System.out.println(name);
} }
public static void main(String[] args) {
 final NameList nl = new NameList();
nl.add(“Jacob");

 Thread t1 = new NameDropper(); t1.start();
 Thread t2 = new NameDropper(); t2.start();
}

As the second thread tries to
remove the first, it raises an
IndexOutOfBoundsException

Example (III)
§  In a "thread-safe" class each individual

method is synchronized.
•  Nothing prevents another thread from doing

something else to the list in between

§  Solution: synchronize the code yourself !
public class NameList {
private List names = new LinkedList();
public synchronized void add(String name) {
 names.add(name);
}
public synchronized String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else return null;
} }

Deadlock
§  Deadlock occurs when two threads are

blocked, with each waiting for the
other’s lock.

⇒ Neither can run until the other gives
up its lock, so they wait forever

§  Poor design can lead to deadlock
§  It is hard to debug code to avoid

deadlock

Thread Deadlock
public int read() {
 synchronized(resourceA) {
 synchronized(resourceB) {
 return resourceB.value + resourceA.value;

} } }
public void write(int a, int b) {
 synchronized(resourceB) {

 synchronized(resourceA) {
 resourceA.value = a;
 resourceB.value = b;

} } }

THREAD INTERACTIONS

Synchronization in Object
§  void wait()

• Causes current thread to wait until another
thread invokes the notify() method or
the notifyAll() method for this object.

§  void notify()
• Wakes up a single thread that is waiting on

this object's lock.
§  void notifyAll()

• Wakes up all threads that are waiting on
this object's lock.

Wait and Notify
§  A thread can invoke a wait() on an object

monitor
•  Provided it owns a lock on the object monitor

§  A a result, the thread
•  Releases the lock
•  Is placed in a waiting pool

§  When the thread is signaled
•  It wakes up
•  Tries to acquires back the lock
�  It is possibly blocked while any other owns the lock

•  Return from the wait method

Notify & NotifyAll
§  The notify() method sends a signal

to one of the threads that are waiting
in the same object's waiting pool.
•  The notify() method CANNOT specify

which waiting thread to notify.
§  The method notifyAll() is similar

but only it sends the signal to all of
the threads waiting on the object.

Example
public class Main{
public static void main(String [] args) {
 Worker b = new Worker();
 synchronized(b) {
 b.start();
 try {
 System.out.println("Waiting for b to complete");
 b.wait();
 } catch (InterruptedException e) {}
 System.out.println("Total is: ” + b.total);
 }
}} class Worker extends Thread {

 int total;
 public synchronized void run() {
 for(int i=0;i<100;i++)
 total += i;
 notify();
} }

Example: Java FIFO
import java.util.ArrayList;

public class FIFO{
 private ArrayList v;

 FIFO() {
 v = new ArrayList(3);
 }
 public synchronized void

insert(Object o) {
 v.add(o);
 notifyAll();
 }

public synchronized
Object extract()
 throws Exception {
 Object temp;
 if (v.size()==0)
 wait();
 temp=v.get(0);
 v.remove(0);
 return(temp);
 }
}

Spontaneous Wakeup
§  A thread may wake up even though no code

has called notify() or notifyAll()
•  Sometimes the JVM may call notify() for reasons

of its own,
•  Other class calls it for reasons you just don't know.

§  When your thread wakes up from a wait(),
you don't know for sure why it was awakened!

§  Solution: putting the wait() method in a while
loop and re-checking the condition:
•  We ensure that whatever the reason we woke up, we

will re-enter the wait() only if the thing we were
waiting for has not happened yet.

Example: Java FIFO
import java.util.ArrayList;

public class FIFO{
 private ArrayList v;

 FIFO() {
 v = new ArrayList(3);
 }
 public synchronized void

insert(Object o) {
 v.add(o);
 notifyAll();
 }

public synchronized
Object extract()
 throws Exception {
 Object temp;
 while(v.size()==0)
 wait();
 temp=v.get(0);
 v.remove(0);
 return(temp);
 }
}

Livelock
§  A livelock happens when threads are

actually running, but no work gets done
•  what is done by a thread is undone by

another
§  Ex: each thread already holds one object

and needs another that is held by the
other thread.

§  What if each thread unlocks the object it
owns and picks up the object unlocked
by the other thread ?
•  These two threads can run forever in lock-

step!

Thread Starvation
§  Wait/notify primitives of the Java

language do not guarantee liveness
(=> starvation)

§  When wait() method is called
•  thread releases the object lock prior to

commencing to wait
•  and it must be reacquired before

returning from the method, post
notification

Thread Starvation
§  Once a thread releases the lock on an

object (following the call to wait), it is
placed in a object�s wait-set
•  Implemented as a queue by most JVMs
•  When a notification happens, a new thread

will be placed at the back of the queue
§  By the time the notified thread actually

gets the monitor, the condition for which
it was notified may no longer be true …
•  It will have to wait again
•  This can continue indefinitely => Starvation

Synchronization objects
§  Semaphore

• Methods: acquire() and release()
§  CountDownLatch

• Methods: await() and countDown()
§  CyclicBarrier

• Methods: await()

� All classes are in package
java.util.concurrent

Summary
§  Threads are concurrent execution

contexts
• Concurrency may be physical (e.g.

multicore) or virtual (OS preemption)
§  Threads are supported through the

class Thread that can be
•  Extended with an overridden run method
•  Initialized with a Runnable object

§  Once created, threads must be started

Summary
§  Threads are assigned time slices
§  A thread can hand over execution

time by
•  sleep() that pauses the thread
•  yield() that gives another thread the

opportunity to run
§  A thread can be interrupted with the
interrupt() method that makes the
thread return from a waiting method
with an InterruptedException

Summary
§  Concurrent access to shared variables

must be controlled
§  Mutual exclusion is achieved by

means of synchronized methods and
code blocks
• Using the monitor associated with any

Java object

Summary
§  Coordination between threads can be

performed by
•  wait() that suspends the execution
� This is an alternative to a busy form of

waiting
•  notify() that wakes up a waiting thread

