
Input/Output

Version 4.0.0 - May 2018

© Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Stream
§  All I/O operations rely on the abstraction of

stream (flow of elements)
§  A stream can be linked to:

♦  A file on the disk
♦  Standard input, output, error
♦  A network connection
♦  A data-flow from/to whichever hardware device

§  I/O operations work in the same way with
all kinds of stream

3

4

Stream
§  Package: java.io
§  Reader / Writer

♦ stream of chars (Unicode chars - 16 bit)
- All characters

§  InputStream / OutputStream
♦ stream of bytes (8 bit)

- Binary data, sounds, images

§  All related exceptions are subclasses
of IOException

Byte vs. Char Oriented Streams Class Diagram0 2015/05/11 powered by Astah

 pkg

InputStream OutputStream Reader Writer File

Application

byte char

Encoding / Decoding

Byte vs. Char Example Class Diagram0 2015/05/11 powered by Astah

 pkg

InputStream OutputStream Reader Writer File

Application

c3a816

Encoding / Decoding

[c316,a816]

'è'

['è']

Unicode charset

Readers

Class Diagram1 2015/05/11 powered by Astah

 pkg

Reader

BufferedReader

CharArrayReader

FilterReader

InputStreamReader

PipedReader

StringReader

LineNumberReader

FileReader

PushBackReader

Reader (abstract)
void close()

- Close the stream.
int read()

- Read a single character:
- Returns -1 when end of stream

int read(char[] cbuf)
- Read characters into an array.

int read(char[] cbuf,
 int off, int len)

- Read characters into a portion  
of an array.

8

Blocking methods
i.e. stop until
•  data available,
•  I/O error, or
•  end of stream

Reader (abstract)
§  boolean ready()

- Tell whether the stream is ready to be read.

§  void reset()
- Reset the stream, restart from beginning

§  long skip(long n)
- Skip n characters

9

Read a char
int ch = r.read();

char unicode = (char) ch;

System.out.print(unicode);

r.close();

Character ch unicode

‘A’ 0…00000000 01000001bin = 65dec 65

‘\n’ 0…00000000 00001101bin = 13dec 13

End of file 1…11111111 11111111bin = -1dec -

Read a line
public static String readLine(Reader r)
throws IOException{
 StringBuffer res= new StringBuffer();
 int ch = r.read();
 if(ch == -1) return null; // END OF FILE!
 while(ch != -1){
 char unicode = (char) ch;
 if(unicode == '\n') break;
 if(unicode != '\r’) res.append(unicode);
 ch = r.read();
 }
 return res.toString();
}

Writers Writers 2015/05/12 powered by Astah

 pkg

Writer

BufferedWriter

CharArrayWriter

FilterWriter

OutputStreamWriter

PipedWriter

PrintWriter

StringWriter

FileWriter

Writer (abstract)
void write(int c)

♦  Write a single character.
void write(char[] cbuf)

♦  Write an array of characters.
void write(char[] cbuf, int off, int len)

♦  Write a portion of an array of characters.
void write(String str)

♦  Write a string.
close()

♦  Close the stream, flushing it first.
abstract void flush()

♦  Flush the stream.
13

Input streams InputStreams 2015/05/12 powered by Astah

 pkg

InputStream

ByteArrayInputStream

FileInputStream

FilterInputStream

ObjectInputStream

PipedInputStream

SequenceInputStream

DataInputStream

LineNumberInputStream

PushBackInputStream

InputStream
void close()

♦  Closes this input stream and releases any
system resources associated with the stream.

int read()
♦  Reads the next byte of data from the input

stream.
int read(byte[] b)

♦ Reads some number of bytes from the input
stream and stores them into the buffer array
b.

int read(byte[] b, int off, int len)
♦ Reads up to len bytes of data from the input

stream into an array of bytes.

15

InputStream
int available()

♦  Returns the number of bytes that can be read (or skipped
over) from this input stream without blocking by the next
caller of a method for this input stream.

void reset()
♦  Repositions this stream to the position at the time the

mark method was last called on this input stream.

long skip(long n)
♦  Skips over and discards n bytes of data from this input

stream.

16

Output streams
OutputStreams 2015/05/12 powered by Astah

 pkg

OutputStream

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

BufferedOutputStream

DataOutputStream

PrintStream

OutputStream
void write(byte[] b)

♦  Writes b.length bytes from the specified byte array to this
output stream.

void write(byte[] b, int off, int len)
♦  Writes len bytes from the specified byte array starting at

offset off to this output stream.
void write(int b)

♦  Writes the specified byte to this output stream.
void close()

♦  Closes this output stream and releases any system
resources associated with this stream.

void flush()
♦  Flushes this output stream and forces any buffered output

bytes to be written out.

18

19

Stream specializations
§  Memory
§  Pipe
§  File
§  Buffered
§  Printed
§  Interpreted

Conversion byte <-> char
§  InputStreamReader
 char ß byte

§  OutputStreamWriter
 char à byte

§  The constructors allow specifying a
charset to decode/encode the byte to/
from characters

20

Read/Write in memory
§  CharArrayReader
§  CharArrayWriter
§  StringReader
§  StringWriter

♦ R/W chars from/to array or String
§  ByteArrayInputStream
§  ByteArrayOutputStream

♦ R/W bytes from/to array in memory

21

R/W of Pipe
§  Pipes are used for inter-thread

communication they must be used in
connected pairs

§  PipedReader
§  PipedWriter

♦ R/W chars from pipe
§  PipedInputStream
§  PipedOutputStream

♦ R/W bytes from pipe

22

R/W of File
§  Used for reading/writing files
§  FileReader
§  FileWriter

♦ R/W chars from file
§  FileInputStream
§  FileOutputStream

♦ R/W bytes from file

23

Copy text file
Reader src = new FileReader(args[0]);

Writer dest = new FileWriter(args[1]);

int in;

while((in=src.read()) != -1){

 dest.write(in);

}

src.close();

dest.close();

24

One char at a time
is higly inefficient!

Copy text file with buffer
Reader src = new FileReader(args[0]);

Writer dest = new FileWriter(args[1]);

char[] buffer = new char[4096];

int n;

while((n = src.read(buffer))!=-1){

 dest.write(buffer,0,n);

}

src.close();

dest.close();

25

The buffered version
is 10 times faster

26

Buffered
§  BufferedInputStream

BufferedInputStream(InputStream i)
BufferedInputStream(InputStream i, int s)

§  BufferedOutputStream
§  BufferedReader

readLine()

§  BufferedWriter

Printed streams
§  PrintStream(OutputStream o)

♦ Provides general printing methods for all
primitive types, String, and Object
- print()
- println()

♦ Designed to work with basic byte
oriented console

♦ Does not throw IOException, but it sets
a bit, to be checked with method
checkError()

27

Standard in & out
§  Default input and output streams are

defined in class System

class System {

 //…

 static InputStream in;

 static PrintStream out;
 static PrintStream err;

}

28

Replacing standard streams
§  Default streams can be replaced

♦ setIn(), setOut(), setErr()
String input = "This is\nthe input\n";

InputStream altInput = new

 ByteArrayInputStream(input.getBytes());

InputStream oldIn = System.in;

System.setIn(altInput);

readLines();

System.setIn(oldIn);

Interpreted streams
§  Translate primitive types into / from

standard format
♦ Typically on a file

§  DataInputStream(InputStream i)
♦ readByte(), readChar(), readDouble(),

readFloat(), readInt(), readLong(),
readShort(), ..

§  DataOutputStream(OutputStream o)
♦ like write()

30

URLs
§  Streams can be linked to URL

URL page = new URL(url);

InputStream in = page.openStream();

♦ Be careful about the type of file you are

downloading.

Download file
URL home = new URL("http://…");
URLConnection con = home.openConnection();
String ctype = con.getContentType();
if(ctype.equals("text/html")){
 Reader r = new InputStreamReader(
 con.getInputStream());

 Writer w = new OutputStreamWriter(System.out);
 char[] buffer = new char[4096];
 while(true){
 int n = r.read(buffer);
 if(n==-1) break;
 w.write(buffer,0,n);
 }
 r.close(); w.close();
}

Stream as resources
§  Streams consume OS resources

♦ Should be closed as soon as possible to
release resources

String readFirstLine(String path)
 throws IOException{

 BufferedReader br=new BufferedReader(
 new FileReader(path));
 String l = br.readLine();
 br.close()
 return l
} What happens in case of

exception in readLine ?

Missing close with exception
String readFirstLine(String path)
 throws IOException{

 BufferedReader br=new BufferedReader(
 new FileReader(path));

 String l = br.readLine();
 br.close()
 return l
}

What happens in case of
exception in readLine ?

Catch and close
String readFirstLine(String path)
 throws IOException {

 BufferedReader br=new BufferedReader(
 new FileReader(path));
 try {
 String l = br.readLine();
 br.close();
 return l
 } catch(IOException e){
 br.close();
 throw e;
 }
}

Complex and does not
close in case of Error

Finally close
String readFirstLine(String path)
 throws IOException {

 BufferedReader br=new BufferedReader(
 new FileReader(path));
 try {
 return br.readLine();
 } finally {
 if(br!=null) br.close();
 }
}

Executed in any case
before exiting the method

Try-with-resource
String readFirstLine(String path)
 throws IOException {

 try(
 BufferedReader br=new BufferedReader(
 new FileReader(path))){

 return br.readLine();
 }
}

Works since BuffereReader
implements Autocloseable

public interface AutoCloseable{
 public void close();
}

SERIALIZATION

39

Serialization
§  Read / write of an object imply:

♦ read/write attributes (and optionally the
type) of the object

♦ Correctly separating different elements
♦ When reading, create an object and set all

attributes values
§  These operations (serialization) are

automated by
♦ ObjectInputStream
♦ ObjectOutputStream

Using Serialization
§  Methods to read/write objects are:

void writeObject(Object)
Object readObject()

§  ONLY objects implementing interface
Serializable can be serialized
♦ This interface is empty
⇒ Just used to avoid serialization of objects,

without permission of the class developer

40

Type recovery
§  When reading, an object is created
§  ... but which is its type?
§  In practice, not always a precise

downcast is required:
♦ Only if specific methods need to be

invoked
♦ A downcast to a common ancestor can be

used to avoid identifying the exact class

41

Saving Objects with references
§  Serialization is applied recursively to

object in references
§  Referenced objects must implement

the Serializable interface
§  Specific fields can be excluded from

serialization by marking them as
transient

Saving Objects with references
§  An ObjectOutputStream saves all objects

referred by its attributes
♦  objects serialized are numbered in the stream
♦  references are saved as ordering numbers in the

stream
§  If two saved objects point to a common

one, this is saved just once
♦  Before saving an object, ObjectOutputStream

checks if it has not been already saved
♦  Otherwise it saves just the reference

43

Serialization
List<Student> students=new LinkedList<>();
students.add(...);
...
ObjectOutputStream serializer =
 new ObjectOutputStream(
 new FileOutputStream(”std.dat"));

serializer.writeObject(students);
serializer.close();

ObjectInputStream deserializer =
 new ObjectInputStream(
 new FileInputStream("std.dat"));

Object retrieved = deserializer.readObject();
deserializer.close();
List<Student> l = (List<Student>)retrieved;

public class Student
implements Serializable {…}

FILE

45

46

File
§  Abstract pathname

♦  directory, file, file separator
♦  absolute, relative

§  convert abstract pathname <--> string
§  Methods:

♦  create() delete() exists() , mkdir()
♦  getName() getAbsolutePath(), getPath(),
getParent(), isFile(), isDirectory()

♦  isHidden(), length()
♦  listFiles(), renameTo()

Example: list files
§  List the files contained in the current

working folder
File cwd = new File(".");
for(File f : cwd.listFiles()){
 System.out.println(f.getName()+ " "
 + f.length());

}

New IO (nio)
§  Paths and Files

♦ Abstract path manipulation
♦ Static methods

§  Buffer and Channels
♦ Buffer oriented IO
♦ Leverages efficient memory transfers

(DMA)

Class Path
§  Represents path in the file system

♦ Components extraction:
- E.g. getFileName()

♦ Navigation:
- E.g. getParent(), getRoot()

♦ Relative paths
- relativize()
- isAbsolute()
- resolve()

Class File
§  Provides methods to operate on Paths

♦ Copy content: copy()
♦ Create: createFile()
♦ Test properties: isWritable()
♦ Navigate: list(), find()
♦ Create stream: newInputStream()
♦ Create channel: newByteChannel()
♦ Read: lines()
♦ Write: write()

Example
§  Compute max line length

Path d = Paths.get("file.txt")
int maxLen = 0;
if(Files.exists(d)){
 maxLen = Files.lines(d).
 mapToInt(String::length).
 max().getAsInt();

}

Tokenizers
§  StringTokenizer

♦ Works on String
♦ set of delimiters (blank, “,”, \t, \n, \r, \f)
♦ Blank is the default delimiter
♦ Divides a String in tokens (separated by

delimiters), returning the token
♦ hasMoreTokens(), nextToken()
♦ Does not distinguish identifiers,

numbers, comments, quoted strings

52

53

Tokenizers
§  StreamTokenizer

♦ Works on Stream (Reader)
♦ More sophisticated, recognizes

identifiers, comments, quoted string,
numbers

♦ use symbol table and flag
♦ nextToken(), TT_EOF if at the end

Summary
§  Java IO is based on the stream

abstraction
§  Two main stream families:

♦ Char oriented: Reader/Writer
♦ Byte oriented: Input/OutputStream

§  There are streams specialized for
♦ Memory, File, Pipe, Buffered, Print

Summary
§  Streams resources need to be closed

as soon as possible
♦ Try-with-resource construct guarantee

resource closure even in case of
exception

§  Serialization means saving/restoring
objects using Object streams
♦ Serializable interface enables it

