Java Exceptions

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Version 2.3.4 - May 2018

E n g © Marco Torchiano, 2018
http:/ /softeng.polito.it
SONE RIGHTS RESERVED @ @

. . creative
Licensing Note ()Ebmmons

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by
the author or licensor.

Non-commercial. You may not use this work for commercial
purposes.

@ r\#]o Derlvatlve Works. You may not alter, transform, or build upon
this work

= For any reuse or distribution, you must make clear to others the
license terms of this work.

= Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Motivation

= Report errors, by delegating error
handling to higher levels

¢ Callee might not know how to recover from
an error

¢ Caller of a method can handle error in a
more appropriate way than the callee

= | ocalize error handling code by
separating it from functional code
¢ Functional code is more readable

¢ Error code is collected together, rather than
being scattered

Trp //Sorteng—pclllo,ltg

Error handling: abort

= If a non locally remediable error
happens while method is executing,
call

¢ Abort program execution, no clean up or
resource release

= A method causing an unconditional
program interruption in not very
dependable (nor usable)

ttp //scneng,PDma,ng

Error handling: special value

= |f an error happens while method is
executing,

= Special values are different from normal
return value (e.g., null, -1, etc.)

= Developer must remember value/meaning
of special values for each call to check for
errors

= What if special values are normal?
¢ double pow (base, exponent)
¢ pow(-1, 0.5); //not areal

Error handling code

= Code is messy to write and hard to read

if (somefunc() == ERROR) // detect error
//handle the error

else
//proceed normally

= Only the can intercept errors

¢ no simple delegation to any upward method
¢ Unless additional code is added

ttp:// cneng,pcma,ng

Example - Read file

= open the file

= determine file size

= allocate that much memory
» read the file into memory

= close the file

open ()
stzel All of them
readFile() alloc() can fail
(caller) | read()

close()

(callee)

No error handling
int {
open the file;
determine file size;
allocate that much memory;
read the file into memory;

close the file;

return 0;

ntrp:// cneng,pcma,ng

Special return code

int readFile {

B open the file; (LOtS Of
15 (operationfaiied) error-detection and
determine filesize;\\ error_handllng COde

if (operationFailed)

return -2;

allocate that much memory;
if (operationFailed) {
close the file;
return -3;
}
read the file into memory;
if (operationFailed) {

To detect errors we
must check specs of
library calls (no
homogeneity)

close the file;
return -4;

}

close the file;

if (operationFailed)
return -5;

return O;

SOftEng

sortang. poli

Using exceptions

try {
open the file;
determine file size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) ({
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

SOftEng

softeng. polito.i

Basic concepts

= The code detecting the the error will
an exception
¢ Developers code
¢ Third-party library

= At some point up in the hierarchy of
method invocations, a caller will

and the exception
= |n between, methods can
. the exception (complete delegation)

¢ Intercept and re-issues (partial delegation)

Eng

11
niTET//sorteng Boito It

Syntax

= Java provides three keywords
—Generates an exception
- Introduces code to watch for exceptions

- Defines the exception handling code

= We also need a new object type
class

Generating Exceptions

1. Identify/define an exception class

2. Declare the method as potential
source of exception

3. Create an exception object
4. Throw upward the exception

Generation

public class EmptyStackC){

} (1)
class Stack<E>{ 2)
public E pop () {
if (size == 0) { (3)
Eiiiltion e);

} (4)

ttp //scneng,PDma,ng

throws

= The method signature must declare

the generated within
its body
¢ Possibly more than one

= Either

¢ thrown by the method,

¢ or thrown by other methods called within
the method and

throw

= When an exception is thrown:

¢ The execution of the current method is
interrupted

¢ The code immediately following the
throw statement is not exectuted

—-Similar to a return statement
¢ The catching phase starts

Interception

= Catching exceptions generated in a code

portion

try {

stack.pop() ;
}

// in this piece of code some
// exceptions may be generated

catch (StackEmpty e) {

// error handling

System.out.println(e) ;

}

SOftEng

Execution flow

17

*= open and close
can generate a
FileError

= Suppose read
does not
generate
exceptions

System.out.print ("Begin") ;

File f = new File (“foo.txt”);
try{
f.open() ;
f.read() ;
f.close();
}catch (FileError fe) {
System.out.print ("Error") ;

}

System.out.print ("End") ;

SOftEng

18

Execution flow

If no exception
is generated
then the catch
block is

skipped

Execution flow

If open ()
generates an
exception then

read () and
close () are
skipped

OftEng
ntip://softeng. polito.it

System.out.print ("Begin") ;

File f = new File (“foo.txt”);
try{
f.open() ;
f.read() ;
f.close();
}catch (FileError fe) {
System.out.print ("Error") ;

}

System.out.print ("End") ;

19

System.out.print ("Begin") ;

File f = new File (“foo.txt”);
try{
f.open() ;
f.read() ;
f.close();
}catch (FileError fe) {
System.out.print ("Error") ;

}

System.out.print ("End") ;

20

Exception checking

= When a fragment of code can possibly
raise an exception, the exception
must be checked.

= Checking can use different strategies:
¢ Catch
¢ Propagate
¢ Catch and re-throw

Checking: Catch

class Dummy ({
public void foo() {

FileReader f£f;
f = new FileReader (“file.txt”) ;

Checking: Propagate
class Dummy {

public void foo()
FileReader f£f;
f = new FileReader (“file.txt”);

Checking: Propagate (cont’d)

. Exce,otion not caught can be propagated
untill the main () method and the JVM

class {
public void foo()
throws FileNotFound {
FileReader f = new FileReader (“file”);

class Program ({
public static
void main (String args([])
throws FileNotFound {
Dummy d = new Dummy () ;
d.foo();

ttp:// cneng,pcma,ng

23

Checking: Re-throw

class Dummy {
public void foo() throws FileNotFound({
try{
FileReader f£;
f = new FileReader (“file.txt”)
} catch (FileNotFound fnf) {
// handle fnf, e.g., print it
throw £nf;

SOItEng 25

Exceptions hierarchy

Internal Error,
Hard failure in
VM (e.g. out of
memory)

,,,,,,,,,,, (e.g. null pointer, out

1 [of bounds, cast error)
&I’hrowable]1

[Excepﬂoni}

[i{ 1ﬂ Runtime

Exception

checked ui | .
1

unchecked

Programming error }

SOtEng 26

Checked and unchecked

» Unchecked exceptions

¢ Their generation is not foreseen (can
happen everywhere)

¢ Need not to be declared (not checked by
the compiler)

¢ Errors are generated by JVM only
= Checked exceptions

¢ Exceptions declared and checked

¢ Generated with “throw”

Eng 27

//softang. poli

Main exception classes

« OutOfMemoryError

« ClassNotFoundException

- InstantiationException

+ NoSuchMethodException

- IllegalAccessException

- NegativeArraySizeException

« NullPointerException
- ClassCastException

ttp:// cneng,pcma,ng

Application specific exceptions

= |t is possible to define new types of
exceptions

¢ Represent anomalies specific for the
application

¢ Can be caught separately from the
predefined ones

» Must extend Throwable or one of its
descendants

¢ Most commonly they extend Exception

OftEng 29

Application specific exceptions

= Exceptions are like stones

¢ When they hit you, they first matters
because they exists and are thrown, then
for their message

class Stone class MsgStone
extends Throwable extends Throwable({
{} public MsgStone (String m) {

super (m) ; }

30

finally

= The keyword allows
specifying actions that must be

executed in any case, e.g.:
¢ Dispose of resources
¢ Close a file

MyFile £ = new MyFile() ;
if (f.open(“myfile.txt")) ({

After all try {
CatCh_ branches exceptionalMethod () ;
(if any) } {
f.close();
}
}
Eng i

Exceptions and loops (1)

= For errors affecting a single iteration, the
try-catch blocks is nested in the loop.

= In case of exception the execution goes to
the catch block and then proceed with the
next iteration.

while (true) {
try{
// potential exceptions
}catch (AnException e) {
// handle the anomaly

}
}

ttp:// cneng,pcma,ng

Exceptions and loops (1)

= For serious errors compromising the whole

loop the loop is nested within the try block.

= In case of exception the execution goes to
the catch block, thus exiting the loop.

try{
while (true) {

// potential exceptions
}

}catch (AnException e) {
// print error message

}

MULTIPLE CATCHES

ttp //scneng,PDma,ng

34

Multiple catch

= Capturing different types of exception
is possible with different catch blocks

try {

}
catch (StackEmpty se) {
// here stack errors are handled

}

catch (IOException ioe) ({
// here all other IO problems are handled
}

SOftEng

Execution flow

*= open and close

System.out.print ("Begin") ;
can generate a

FileError File f = new File(“foo.txt”);
try{
= read Can f.open() ;
f.read() ;
generate d £.close() :
IOError }catch (FileError fe) {

System.out.print (“File err”);
}catch (IOError ioe) {

System.out.print (“I/0 err”);
}

System.out.print ("End") ;

SOftEng

Execution flow

If close fails
= “Fijle error’ is

System.out.print ("Begin") ;

File £ = new File (“foo.txt”);

printed try
= Eventually = -openOb
f.read() ;
program e f.close();
terminates “ }catch(FileError fe) {
T y System.out.print (“File err”);
Wlth End , }catch (IOError ioe) {
I System.out.print (“I/0 err”);
\
>}
System.out.print ("End") ;
SOftEng 37

Execution flow

If read fails:

= “//0 error’ is
printed

= Eventually
program
terminates
with “End’

System.out.print ("Begin") ;

File f = new File(“foo.txt”);
try{
f.open() ;
f.read() ;
f.close();
}catch(FileError fe) {
System.out.print (“File err”);
}catch (IOError ioe) {
System.out.print (“I/0 err”);

}

System.out.print ("End") ;

SOftEng

38

Matching rules

= Only is executed

* The is selected,
according to the exception type order

= Handlers are according to

their “generality”

¢ From the most general (base classes) to
the most specific (derived classes)

¢ Most general are the first to be selected

Matching rules

Exception + general

Error FatalEx

IOErr FileErr
- general

Matching rules

class extends Exceptionf{}
class extends Error{}
class extends Error{}
class extends Exceptionf{}
* X
try{ /*.*/] - general
catch (IOErr ioce){ /*.*/ }
catch (Error er){ /*.*/ }
catch (Exception ex){ /*.*/ }
+ general
oftEng a1
Matching rules
class extends Exceptionf{}
class extends Error{}
class extends Error{}
class extends Exceptionf{}
try{ /*.*/ }
catch (IOErr ioe) { }

catch (Error er){ /*.*/ }
catch (Exception ex){ /*.*/ }

Eng 42

nttp://softeng.polito.it

Matching rules

class extends Exceptionf{}
class extends Error{}
class extends Error{}
class extends Exceptionf{}
try{ /*.*/ }

catch (IOErr ioe){ /*.*/ }

catch (Error er) { }

catch (Exception ex){ /*.*/ }

OftEng 43

Matching rules

class extends Exceptionf{}
class extends Error{}
class extends Error{}
class extends Exceptionf{}
try{ /*.*/ }

catch (IOErr ioe){ /*.*/ }
catch (Exrror er){ /*..*/ }
catch (Exception ex) { }

Eng 44

nttp://softeng.polito.it

Nesting

= Try/catch blocks can be nested

¢ E.g. because error handlers may generate
new exceptions
try{
/* Do something */
}catch(...) {
try { /* Log on file */ }
catch(..){ /* Ignore */ }
}

SCP)fJ:E'?g 45

TESTING EXCEPTIONS

SOtEng 46

Testing exceptions

= Two main cases shall be checked:
= We expect an anomaly and therefore an
exception should be rised

+ In this case the tests fails whether NO exception
is detected

= We expect a normal behavior and therefore
no exception should be raised

+ In this case the tests fails whether that exception
in raised

Expected exception test

try{
// e.g. method invoked with “wrong” args

obj.method (null) ;
(“Methdo didn’t detected anomaly") ;
}catch (PossibleException e) {
assertTrue (true); // OK

class TheClassUnderTest {
public void method(String p)
throws PossibleException

{ /*... */}

ttp:// cneng,pcma,ng

Unexpected exception test

try{
// e.g. method invoked with right args
obj.method (“Right Argument") ;
assertTrue (true); // OK

}catch (PossibleException e) {

fail ("Method should not raise except.");

}

Exception = Failure
Runs: 2/2 B Errorss 0 B Failures: @

SOftEng

Unexpected exception test

public void testSomething()

throws PossibleException ({
// e.g. method invoked with right args

obj.method (“"Right Argument") ;

C N

Exception - Error

Runs: 2/2 B Errors:@ B Failures: 0

.y
-)

SOftEng

Summary

= Exceptions provide a mechanism to
handle anomalies and errors

= Allow separating “nominal case” code
from exceptional case code

= Decouple anomaly detection from
anomaly handling

= They are used pervasively throughout
the standard Java library

Summary

= Exceptions are classes extending the
Throwable base class

* Inheritance is used to classify
exceptions
¢ Error represent internal JVM errors

¢ RuntimeException represent
programming error detected by JVM

¢ Exception represent the usual
application-level error

ttp:// cneng,pcma,ng

51

52

Summary

= Exception be checked by
¢ Catching them with try{ }catch{ }
¢ Propagating with throws
¢ Catching and re-throwing (propagating)
» Unchecked exception can avoid
mandatory handling

¢ All exceptions extending Exrror and
RuntimeException

53

