
Inheritance

Version 4.7.3
© Maurizio Morisio, Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Inheritance
§  A class can be a sub-type of another class
§  The derived class contains

w  all the members of the class it inherits from
w  plus any member it defines explicitly

§  The derived class can override the
definition of existing methods by providing
its own implementation

§  The code of the derived class consists of
the changes and additions to the base class

Addition
class Employee{
 String name;
 double wage;
 void incrementWage(){…}

}
class Manager extends Employee{
 String managedUnit;
 void changeUnit(){…}

}
Manager m = new Manager();
m.incrementWage(); // OK, inherited

Override
class Vector{
 int vect[];
 void add(int x) {…}

}

class OrderedVector extends Vector{
 void add(int x){…}

}

Inheritance and polymorphism
class Employee{
 private String name;
 public void print(){
 System.out.println(name);
 }
}

class Manager extends Employee{
 private String managedUnit;
 public void print(){ //override
 System.out.println(name);
 System.out.println(managedUnit);
 }
}

Inheritance and polymorphism

Employee e1 = new Employee();

Employee e2 = new Manager();

e1.print();

e2.print();

Correct: a Manager
is a Employee

Employee version:
prints just the name

Manager version:
prints name and unit

Why inheritance - Reuse
§  Frequently, a class is merely a modification

of another class. Inheritance minimizes the
repetition of the same code

§  Localization of code
w  Fixing a bug in the base class automatically fixes

it in all the subclasses
w Adding a new functionality in the base class

automatically adds it in the subclasses too
w  Less chances of different (and inconsistent)

implementations of the same operation

Why inheritance - Flexibility
§  Often we need to treat different

objects in a similar way
w Polymorphism allows feeding algorithms

with different objects
w Dynamic binding allows accomodating

different behavior behind the same
interface

10

Inheritance in a few words
§  Subclass

w Inherits attributes and methods defined in
base classes

w Can modify inherited attributes and
methods (override)

w Can add new attributes and methods

11

Inheritance syntax: extends

Car

color
isOn
licencePlate

turnOn()
paint()

ElectricCar

cellsAreCharged

recharge()
turnOn()

class Car {

 String color;
 boolean isOn;
 String licencePlate;

 void paint(String color) {
 this.color = color;
 }

 void turnOn() {
 isOn=true;
 }
}

class ElectricCar extends Car{

 boolean cellsAreCharged;

 void recharge() {
 cellsAreCharged = true;
 }

 void turnOn() {
 if(cellsAreCharged)
 isOn=true;
 }
}

12

ElectricCar
§  Inherits

w attributes (color, isOn, licencePlate)
w methods (paint)

§ Modifies (overrides)
w turnOn()

§  Adds
w attributes (cellsAreCharged)
w Methods (recharge)

Terminology
§  Class one above

w Parent class
§  Class one below

w Child class
§  Class one or more above

w Superclass, Ancestor class, Base class
§  Class one or more below

w Subclass, Descendent class

Multi-level inheritance
§  Inheritance can be applied  

at multiple stages

class B extends A { … }

class C extends B { … }

class D extends C { … }

Multi-level 2017/03/24 powered by Astah

 pkg

A

B

C

D

Inheritance tree

15

Animal

salesman

Living species

vegetal

Flower

Human being

Flower seller

Customer

DIT

Depth of Inheritance Tree
§  Too deep inheritance trees reduces

code understandability
w In order to figure out the structure and

behavior of a class you need to look into
each and every ancestor class

§  General rule is to keep DIT ≤ 5
w Empirical limit

CASTING

Types
§  Java is a strictly typed language, i.e.,

each variable has a type

float f;
f = 4.7; // legal
f = "string"; // illegal
Car c;
c = new Car(); // legal
c = new String(); // illegal

18

Cast
§ Type conversion

w explicit or implicit
int i = 44;
float f = i;
// implicit cast 2c -> fp
f = (float) 44;
// explicit cast

19

20

Cast - Generalization
§  Things change slightly with

inheritance
§  Normal case…

Employee e = new Employee("Smith",12000);
Manager m = new Manager("Black",25000,"IT");

Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

Manager

CEO

Generalization

Employee

Manager

CEO

Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

Manager

CEO

22

Upcast
§  Assignment from a more specific type

(subtype) to a more general type (supertype)

Employee e = new Employee(…);
Manager m = new Manager(…);
Employee em = m
w ∀ m ∈ Manager : m ∈ Employee

§  Upcasts are always type-safe and are
performed implicitly by the compiler
w  Though it is legal to explicitly indicate the cast

Upcast
§ Motivation

w You can treat indifferently objects of
different classes, provided they derive
from a common base class

Employee[] team = {

 new Manager("Mary Black",25000,"IT"),

 new Employee("John Smith",12000),

 new Employee("Jane Doe",12000)

};

Cast and conversion
§  Reference type and object type are

distinct concepts
§  A reference cast only affects the

reference
w  In the previous example the object referenced to

by ‘em’ continues to be of Manager type

§  Notably, in contrast, a primitive type
cast involves a value conversion

25

Downcast
§  Assignment from a more general type

(super-type) to a more specific type
(sub-type)
w Manager mm = (Manager)em;
§  ∃ em ∈ Employee : em ∈ Manager
§  ∃ em ∈ Employee : em ∉ Manager

§  Not safe by default, no automatic
conversion provided by the compiler
w MUST be explicit

Downcast
§ Motivation

w To access a member defined in a class
you need a reference of that class type
– Or any subclass

Employee emp = staff[0];

s = emp.getDepartment();

Manager mgr = (Manager)staff[0];

s = mgr.getDepartment();

Syntax Error: The method
getDepartment() is

undefined for the type
Employee

Downcast - Warning
§  Compiler trusts any downcast
§  JVM checks type consistency for all

reference assignments, at run-time
w The class of the object must be equal to

the class of the reference or to any of its
subclasses

mgr = (Manager)staff[1];

 ClassCastException: Employee cannot be cast to Manager

28

Down cast safety
§  Use the instanceof operator

aReference instanceof aClass
w Returns true if the object referred to by

the reference can be cast to the class
–  i.e. if the object belongs to the given class or

to any of its subclasses

if(staff[1] instanceof Manager){
 mgr = (Manager)staff[1];
}

POLYMORPHISM AND
DYNAMIC BINDING

Polymorphism
§  A reference of type T can point to an

object of type S if-and-only-if
w S is equal to T or
w S is a subclass of T

Car myCar;

myCar = new Car();

myCar = new ElectricCar();

30

31

Polymorphism
Car[] garage = new Car[4];

garage[0] = new Car();

garage[1] = new ElectricCar();

garage[2] = new ElectricCar();

garage[3] = new Car();

for(Car a : garage){

 a.turnOn();

}

Static type checking
§  The compiler performs a check on

method invocation on the basis of the
reference type

for(Car a : garage){
 a.turnOn();
}

32

Car

color
isOn
licencePlate

turnOn()
paint() Does the type of a (i.e. Car)

provide method turnOn()?

Dynamic Binding
§  Association message – method

w Performed by JVM at run-time
§  Constraint

w Same signature

for(Car a : garage){
 a.turnOn();
}

33

message methods

Car

color
isOn
licencePlate

turnOn()
paint()

ElectricCar

cellsAreCharged

recharge()
turnOn()

Dynamic binding procedure
1.  The JVM retrieves the effective class of

the target object
2.  If that class contains the invoked

method it is executed
3.  Otherwise the parent class is considered

and step 2 is repeated
§  Note: the procedure is guaranteed to

terminate
w The compiler checks the reference type class

(a base of the actual one) defines the method

Why dynamic binding
§  Several objects from different classes,

sharing a common ancestor class
§  Can be treated uniformly
§  Algorithms can be written for the base

class (using the relative methods) and
applied to any subclass

Substitutability principle
§  If S is a subtype of T, then objects of type

T may be replaced with objects of type S
w A.k.a. Liskov Substitution Principle (LSP)

Class Diagram0 2015/03/20 powered by Astah

 pkg

T

S

Communication Diagram0 2015/03/20 powered by Astah

Communication Diagram0sd

aSObject : S

aTObject : TT aTReference

S aSRefrence

Stack Heap

⇒

Inheritance vs. Duck typing
§  Duck typing

w Correctness of method invocation is checked
at run-time

w  Invocation is correct if the actual class of the
target object provides the required method
(directly or inherited)

w Dynamic binding can result into an error

If it looks like a duck, swims like a duck, and
quacks like a duck, then it probably is a duck

Masked overridden methods
§ When a method in a derived class

overrides one in the base class, the
latter is masked
w The overridden method it invisible

§  This rule might represent a problem if
we wish to re-use the original
overridden method from within the
subclass

Super (reference)

39

Car

color
isOn
licencePlate

turnOn()
paint()

ElectricCar

cellsAreCharged

recharge()
turnOn()

class Car {

 String color;
 boolean isOn;
 String licencePlate;

 void paint(String color) {
 this.color = color;
 }

 void turnOn() {
 isOn=true;
 }
}

class ElectricCar extends Car{

 boolean cellsAreCharged;

 void recharge() {
 cellsAreCharged = true;
 }

 void turnOn() {
 if(cellsAreCharged)
 super.turnOn();
 }
}

Super (reference)
§  This references the current object

§  Super references the parent class

40

Attributes redefinition
class Parent{
 protected int attr = 7;
}

class Child{
 protected String attr = "hello";

 void print(){
 System.out.println(super.attr);
 System.out.println(attr);
 }
}

41

Improper override
§  A method override must use exactly

the original method signature
w Might widen visibility

§  A slightly different method is not an
override and therefore not considered
in the dynamic binding procedure

§  Annotation @Override
w Inform the compiler that a method is

intended as an override

VISIBILITY (SCOPE)

44

Example
class Employee {
 private String name;
 private double wage;
}

class Manager extends Employee {

 void print() {
 System.out.println(�Manager� +
 name + ��� + wage);
 }
}

Not visible

Protected
§  Attributes and methods marked as

w public are always accessible
w private are accessible from within the

declaring class only
w protected are accessible from within the

class and its subclasses

45

In summary
Method
in the
same
class

Method of
other class
in the same

package

Method
of

subclass

Method of
class in
other

package

private ü
package ü ü
protected ü ü ü
public ü ü ü ü

INHERITANCE AND
CONSTRUCTORS

Construction of child’s objects
§  Since each object �contains� an

instance of the parent class, the latter
must be initialized

§  Java compiler automatically inserts a
call to default constructor (w/o
parameters) of the parent class

§  The call is inserted as the first
statement of each child constructor

48

49

Construction of child objects
§  Execution of constructors proceeds

top-down in the inheritance hierarchy

§  In this way, when a method of the

child class is executed (constructor
included), the super-class is
completely initialized already

50

Example
class ArtWork {
 ArtWork() {
 System.out.println(“ctor ArtWork”); }
}

class Drawing extends ArtWork {
 Drawing() {
 System.out.println(“ctor Drawing”); }
}

class Cartoon extends Drawing {
 Cartoon() {
 System.out.println(“ctor Cartoon”); }
}

51

Example (cont�d)

Cartoon obj = new Cartoon();

ctor ArtWork
ctor Drawing
ctor Cartoon

52

A word of advice
§  Default constructor �disappears� if

custom constructors are defined
class Parent{
 Parent(int i){}

}
class Child
extends Parent{ }
// error!

class Parent{
 Parent(int i){}
 Parent(){} //explicit

}
class Child

extends Parent { }
// ok!

53

Super
§  If you define custom constructors

with arguments
§  and default constructor is not defined

explicitly

è the compiler cannot insert the call
automatically
w The arguments cannot be inferred

54

Super
§  The child class constructor must call

the right constructor of the parent
class, explicitly

§  Use super() to identify constructors
of parent class

§ Must be the first statement in child
constructors

55

Example
class Employee {
 private String name;
 private double wage;
 ???
 Employee(String n, double w){
 name = n;
 wage = w;
 }
}

class Manager extends Employee {
 private int unit;

 Manager(String n, double w, int u) {
 super(); // ERROR !!!
 unit = u;
 }
}

56

Example
class Employee {
 private String name;
 private double wage;

 Employee(String n, double w){
 name = n;
 wage = w;
 }
}

class Manager extends Employee {
 private int unit;

 Manager(String n, double w, int u) {
 super(n,w);
 unit = u;
 }
}

Final method
§  The keyword final applied to a

method makes it not overridable by
subclasses
w When methods must keep a predefined

behavior
w E.g. method provide basic service to other

methods

OBJECT CLASS

Not an antinomy:
in Java there is a class called “Object”

59

Class Object
§  java.lang.Object
§  All classes are subtypes of Object

Bird

canFly

Object

Vertebrate
hasSpine

class Vertebrate {
 …
}

class Bird extends Vertebrate{
 …
}

extends Object Implicitly

Class Object
§  Each instance can be seen as an

Object instance (see Collection)
§  Class Object defines some services,

which are useful for all classes
§  Often, they are overridden in sub-

classes

60

Object
toString() : String
equals(Object) : boolean

Groups of Objects
§  References of type Object play a role

similar to void* in C
Object [] objects = new Object[3];
objects[0]= "First!”;

objects[2]= new Employee("Luca","Verdi");

objects[1]= new Integer(2);
for(Object obj : objects){

 System.out.println(obj);
}

Wrappers must be
used instead of
primitive types

Company Employees Class Diagram2 2014/03/21 powered by Astah

 pkg

Employee

+ getDepartment() : String

Manager

+ raiseSalary() : void

CEO

Object

Upcast to Object
§  Each class is either directly or

indirectly a subclass of Object
§  It is always possible to upcast any

instance to Object type (see Collection)

AnyClass foo = new AnyClass();
Object obj;
obj = foo;

63

Object class methods
§  hashCode()

w Returns a unique code
§  toString()

w Returns string representation of the object
§  equals()

w Checks if two objects have same contents
§  clone()

w Creates a copy of the current object
§  finalize()

w  Invoked by GC upon memory reclamation

65

Object.toString()

§  toString()
w  Returns a string

representing the object
contents

w  The default
implementation returns:

ClassName@#hash#
w  Es:
org.Employee@af9e22

Object
toString() : String
equals(Object) : boolean

66

Object.equals()

§  equals()
w  Tests equality of values
w Default implementation

compares references:

 public boolean equals(Object other){
 return this == other;
 }
w  Must be overridden to compare contents, e.g.:

 public boolean equals(Object o){
 Student other = (Student)o;
 return this.id.equals(other.id);
 }

Object
toString() : String
equals(Object) : boolean

The equals() Contract
§  Reflexive: x.equals(x) == true
§  Symmetric: x.equals(y)==y.equals(x)
§  Transitive: for any reference x, y and z

w  if x.equals(y)==true &&
y.equals(z)==true => x.equals(z)==true

§  It is consistent: for any references x and
y, multiple invocations of x.equals(y)
consistently return true (or false)
w  Provided no information used in equals

comparisons on the object is modified.
§  x.equals(null) == false

The hashCode() contract
§  hashCode()must consistently return the

same value, if no information used in
equals() is modified.

§  If two objects are equal for equals()
method, then calling hashCode() on the
two objects must produce the same result

§  If two objects are unequal for equals()
method, then calling hashCode() on the
two objects may produce distinct results.
w  producing distinct results for unequal objects

may improve the performance of hash tables

hashCode() vs. equals()
Condition Required Not Required

(but allowed)

x.equals(y) == true x.hashCode()==
y.hashCode()

x.hashCode() ==
y.hashCode()

x.equals(y)==
true

x.equals(y) == false -

x.hashCode() !=
y.hashCode()

x.equals(y)==
false

System.out.print(Object)

§  print() methods implicitly invoke
toString() on all object parameters
 class Car{ String toString(){…} }

 Car c = new Car();

 System.out.print(c); // same as...

 System.out.print(c.toString());

§  Polymorphism applies when toString() is
overridden
 Object ob = c;

 System.out.print(ob);//Car�s toString() called

70

71

Variable arguments- example
static void plst(String pre, Object...args){

System.out.print(pre + ", ");
for(Object o : args){

if(o!=args[0]) System.out.print(", ");
 System.out.print(o);
 }

 System.out.println();
}

public static void main(String[] args) {
 plst("List:", "A", 'b', 123, "hi!");
}

ABSTRACT CLASSES

Abstract class
§  Often, a superclass is used to define

common behavior for many children
classes

§  Though some methods have no
obvious implementation in the
superclass

§  The behavior is left partially
unspecified

§  The superclass cannot be instantiated

73

Abstract modifier
§  The abstract modifier marks the

class as non-complete
§  The modifier must be applied to all

incomplete method and to the class

74

public abstract class Expression {

 // to be implemented in child classes
 public abstract double evaluate();
}

No method body

75

public class Operand extends Expression {
 private double value;
 public Operand(double v){
 value = v;
 }

 public double evaluate() {
 return value;
 }
}

Abstract modifier

Expression e=new Expression();//No:abstract

Expression v=new Operand(1);// OK: concrete

76

public class Addition extends Expression {
 private Expression left, right;
 public Addition(Expression l,
 Expression r){
 left=l; right=r;
 }

 public double evaluate() {
 return left.evaluate()+right.evaluate();
 }
}

Abstract modifier

Expression s= new Addition(
 new Operand(3),
 v);

double res = s.evaluate();

Abstract Expression Tree Class Diagram1 2016/04/06 powered by Astah

 pkg

+ evaluate() : double

Expression

- value : double

+ evaluate() : double

Operand

+ evaluate() : double

Addition

1

left

1

0..1

right

78

public abstract class Shape {

 private int color;

 public void setColor(int color){
 this.color = color;
 }

 // to be implemented in child classes
 public abstract void draw();
}

Abstract modifier

No method
body

79

public class Circle extends Shape {

 public void draw() {
 // body goes here
 }
}

Object a = new Shape(); // Illegal: abstract
Object a = new Circle();// OK: concrete

Abstract modifier

Composite Pattern
§  Context:

w You need to represent part-whole
hierarchies of objects

§  Problem
w Clients need to access a unique interface
w There are structural difference between

composite objects and individual objects.

80

81

Composite Pattern

Client Component
operation()
add(Component)
remove(Component)
getChild()

Composite
operation()
add(Component)
remove(Component)
getChild()

Leaf
operation()

0..*
child

Example: Sorter
public abstract class Sorter {
 public void sort(Object v[]){
 for(int i=1; i<v.length; ++i)
 for(int j=1; j<v.length; ++j){
 if(compare(v[j-1],v[j])>0){
 Object o=v[j];
 v[j]=v[j-1]; v[j-1]=o;
 }
 }
 abstract int compare(Object a, Object b);
}

Example: StringSorter
class StringSorter extends Sorter {

 int compare(Object a, Object b){

 String sa=(String)a;

 String sb=(String)b;

 return sa.compareTo(sb);

 }

}

 Sorter ssrt = new StringSorter();
String[] v={"g","t","h","n","j","k"};
ssrt.sort(v);

Template Method Example

Sorter
sort(Object)
compare()

IntegerSorter
compare()

85

Template Method Pattern
§  Context:

w An algorithm/behavior has a stable core
and several variation at given points

§  Problem
w You have to implement/maintain several

almost identical pieces of code

AbstractClass
templateMethod()
primitiveOperation()

ConcreteClass
primitiveOperation()

...
primitiveOperation()
...
primitiveOperation()
...

86

Template Method
Core algorithm, invokes

abstract primitive operations

Defines a variation of
the algorithm

INTERFACES

Java interface
§  Special type of class where

w Methods are implicitly abstract (no body)
w Attributes are implicitly static and final
w Members are implicitly public

§  Defined with keyword interface
w  Instead of class

§  Cannot be instantiated
w  i.e. no new

§  Can be used as a type for references
w Similar to abstract class

88

Interface implementation
§  Class implements interfaces

w A class must implement all interface
methods unless the class is abstract

w Interfaces are similar to abstract classes
with only abstract methods

interface Iface {
 void method();

}
class Cls implements Iface {
 void method(){
 // . . .
 }

}

Interfaces and inheritance
§  An interface can extend another

interface, cannot extend a class 
 interface Bar extends Comparable {
 void print();
}

§  An interface can extend multiple
interfaces

interface Bar extends Orderable, Comparable{
 ...
}

90

interfaces

interface

Class implementations
§  A class can extend only one class
§  A class can implement multiple

interfaces

class Person
 extends Employee
 implements Orderable, Comparable {…}

91

Inheritance Classes & Interfaces
Class Interface

Class extends
(only one)

implements
(multiple)

Interface X extends
(multiple)

Anonymous Classes
§  Interfaces are often used to instantiate

anonymous classes
w Inline within a method code
w Providing implementation of methods

– E.g.
Iface obj = new Iface(){
 public void method(){…}
};

Purpose of interfaces
§  Define a common “interface”

w Allows alternative implementations
§  Provide a common behavior

w Define a (set of) method(s) to be called by
algorithms

§  Enable behavioral parameterization
w Encapsulate behavior in an object passed as

parameter
§  Enable communication decoupling

w Define a set of callback method(s)

Alternative implementations
§  Complex numbers

public interface Complex {
 double real();
 double imaginary();
 double modulus();
 double argument();
}
w Can be implemented using either

Cartesian or polar coordinates storage

Alternative implementations
§  Context

w  Same module can be implemented in different
ways by distinct classes with variations of:

–  Storage type or strategy
–  Processing

§  Problem
w  The classes should be usable interchangeably

§  Solution
w  Interface provides a set of methods with a well

defined semantics and functional specification
w Distinct classes can implement it

Common behavior: sorting
§  Class java.utils.Arrays provides

the static method sort()

 int[] v = {7,2,5,1,8,5};
 Arrays.sort(v);

§  Sorting object arrays requires a means
to compare two objects:
w java.lang.Comparable

Comparable
–  Interface java.lang.Comparable

public interface Comparable{
 int compareTo(Object obj);
}

§  Returns
w a negative integer if this precedes obj
w 0, if this equals obj
w a positive integer if this follows obj

98

Note: simplified version, actual declaration uses generics

Example of Comparable usage
public class Student

 implements Comparable {

 int id;

 public int compareTo(Object o){

 Student other = (Student)o;

 return this.id – other.id;

 }

}

Common behavior idiom
§  Context

w An algorithm require its data to provide a
predefined set of common operations

§  Problem
w The algorithm should work on a diverse set

of classes
§  Solution

w  Interface provides the set of required
methods

w Classes implement the interface and provide
methods that are used by the algorithm

Common behavior: iteration
–  Interface java.lang.Iterable

public interface Iterable {
 Iterator iterator();
}

§  Any class implementing Iterable can
be the target of a foreach construct
w Uses the Iterator interface

Note: simplified version, actual declaration uses generics

Common behavior: iteration
–  Interface java.util.Iterator

public interface Iterator {
 boolean hasNext();

 Object next();
}

§  Semantics:
w  Initially before the first element
w hasNext() tells if a next element is present
w next() returns the next element and

advances by one position
Note: simplified version, actual declaration uses generics

Iterable example
public class Letters implements Iterable {
 private char[] chars;
 public Letters(String s){
 chars = s.toCharArray(); }

 public Iterator iterator() {
 return new Iterator(){
 private int i=0;
 public boolean hasNext(){
 return i < chars.length;
 }

 public Object next() {
 return new Character(chars[i++]);
 }
 };

} }

Iterable example
§  Usage of an iterator with for-each

Letters l = new Letters("Sequence");
for(Object e : l){
 char v = ((Character)e);
 System.out.println(v);
}

Iterable example
class Random implements Iterable {
 private int[] values;
 public Random(int n, int min, int max){ … }
 class RIterator implements Iterator {
 private int next=0;
 public boolean hasNext() {
 return next < values.length; }

 public Object next() {
 return new Integer(values[next++]);}

 }
 public Iterator iterator() {
 return new RIterator();
 }
}

Iterable example
§  Usage of an iterator with for-each

Random seq = new Random(10,5,10);
for(Object e : seq){
 int v = ((Integer)e).intValue();
 System.out.println(v);
}

Iterator pattern
§  Context

w A collection of objects has to be iterated
§  Problem

w Multiple concurrent iterations are required
w The internal storage must not be exposed

§  Solution
w Provide an iterator object, attached to the

collection, that can be advanced
independently

Behavioral parameterization

String[] v = {"A", "B", "C", "D"};
Processor printer = new Printer();
process(v, printer);

void process(Object[] v, Processor p){
 for(Object o : v){
 p.handle(o);
 }
}

public interface Processor{
 void handle(Object o);
}

public class Printer
implements Processor{
 public void handle(Object o){
 System.out.println(o);
}}

Behavioral parameterization

String[] v = {"A", "B", "C", "D"};
Processor printer = new Processor(){
 public void handle(Object o){
 System.out.println(o);
 }};
process(v,printer);

void process(Object[] v, Processor p){
 for(Object o : v){
 p.handle(o);
 }
}

public interface Processor{
 void handle(Object o);
}

Anonymous inner class

Strategy Pattern
§  Context

w Many classes or algorithm has a stable
core and several behavioural variations
– The operation performed may vary

§  Problem
w Several different implementations are

needed.
w Multiple conditional constructs tangle the

code.

Strategy Pattern
§  Solution

w Embed inside a strategy object passed as
a parameter to the algorithm

w The strategy object’s class implements an
interface providing the operations
required by the algorithm

Strategy Pattern

Strategy
algorithmInterface()

ConcreteStrategyA
algorithmInterface()

ConcreteStrategyB
algorithmInterface()

Context
ContextInterface()

Comparator
–  Interface java.util.Comparator

public interface Comparator{
 int compare(Object a, Object b);
}

§  Semantics (as comparable): returns
w a negative integer if a precedes b
w 0, if a equals b
w a positive integer if a succeeds b

113

Note: simplified version, actual declaration uses generics

public class StudentCmp implements Comparator{
 public int compare(Object a, Object b){
 Student sa = (Student)a;
 Student sb = (Student)b;
 return a.id – b.id;
 }
}

Comparator

Student[] sv = {new Student(11),
 new Student(3),

 new Student(7)};

Arrays.sort(sv, new StudentCmp());

Strategy Example: Comparator

«Interface»
Comparator

compare(Object a, Object b)

StringComparator
compare()

IntegerComparator
compare()

Collections
sort()

Strategy Consequences
+ Avoid conditional statements
+ Algorithms may be organized in families
+ Choice of implementations
+ Run-time binding
- Clients must be aware of different

strategies
- Communication overhead
- Increased number of objects

Comparator w/anonymous class
Student[] sv = {new Student(11),
 new Student(3),
 new Student(7)};

Arrays.sort(sv, new Comparator(){
 public int compare(Object a, Object b){
 Student sa = (Student)a;
 Student sb = (Student)b;
 return a.id – b.id;
 }

});

Communication decoupling
§  Separating senders and receivers is a

key to:
w Reduce code coupling
w Improve reusability
w Enforce layering and structure

118

Observer - Observable
§  Allows a standardized interaction

between an objects that needs to
notify one or more other objects

§  Defined in package java.util
§  Class Observable
§  Interface Observer

Observer - Observable
§  Class Observable manages:

w  registration of interested observers by means of
method addObserver()

w  sending the notification of the status change to
the observer(s) together with additional
information concerning the status (event object).

§  Interface Observer allows:
w  Receiving standardized notification of the

observer change of state through method
update() that accepts two arguments:

–  Observable object that originated the notification
–  Additional information (the event object)

Observer - Observable
Class Diagram0 2016/03/02 powered by Astah

+ update() : void

Observer

+ notifyObservers() : void
+ setChanged() : void
+ addObserver() : void

Observable

+ update() : void

UnitObserver

notifies

+ longRunningTask() : void

Task

java.util

tasks

Observer - Observable
§  Sending a notification from an

observable element involves two
steps:
w record the fact the the status of the

observable has changed, by means of
method setChanged(),

w send the actual notification and provide
additional information (the event object),
by means of method notifyObservers()

Observer Pattern
§  Context:

w The change in one object may trigger
operations in one or more other objects

§  Problem
w High coupling
w Number and type of objects to be notified

may not be known in advance

123

Observer Pattern
§  Solution

w Define a base Subject class that provides
methods to
– Manage observers registrations
– Send notifications

w Define a standard Observer interface with
a method that receives the notifications

Observer - Consequences
+ Abstract coupling between Subject

and Observer
+ Support for broadcast communication
- Unanticipated updates

125

A word of advice
§  Defining a class that contains abstract

methods only is not illegal but..
w You should use interfaces instead

§  Overriding methods in subclasses can
maintain or extend the visibility of
overridden superclass’s methods
w e.g. protected int m() can’t be overridden

by
– private int m()
– int m()

w Only protected or public are allowed

126

Default methods
§  Interface method implementation can

be provided for default methods
w Cannot refer to non-static attributes

– Since they are unknown to the interface
w Can refer to arguments and other

methods
w Can be overridden as usual methods

Default methods motivation
§  Enable adding new functionality to the

interfaces of libraries and ensure
compatibility with code written for
older versions of those interfaces.

§  Provide extra functionalities through
multiple inheritance

Default method - Example
public interface Complex {
 double real();
 double imaginary();
 double modulus();
 double argument();
 default boolean isReal(){
 return imaginary()==0;
 }
}

FUNCTIONAL INTERFACES

Functional interface
§  An interface containing only one

regular method
– static methods do not count
– default methods do not count

§  The semantics is purely functional
w The result of the method is based solely

on the arguments
–  i.e. there are no side-effects on attributes

w E.g. java.lang.Comparator

Functional interface
§  Predefined interfaces are defined in

w java.util.function
w Specific for different primitive types
w Generic version (see Generics)

§  The predefined interfaces can be used
to define behavioral parameterization
arguments
w E.g. strategy objects

Functions (int versions)
§  Function

w Object apply(int value)
§  Consumer

w void accept(int value)
§  Predicate

w boolean test(int value)
§  Supplier

w int getAsInt()
§  BinaryOperator

w int applyAsInt(int left, int right)

Anonymous Inner class

Processor printer = new Processor(){
 public void handle(Object o){
 System.out.println(o);
 }};
…

void process(Object[] v, Processor p){
 for(Object o : v){
 p.handle(o);
 }
}

public interface Processor{
 void handle(Object o);
}

The only fragment of code
really useful. All the rest is

just syntactic sugar

Lambda function
§  Definition of anonymous inner

instances for functional interfaces
Processor printer =
 o -> System.out.println(o);

new Processor(){
 public void handle(Object o){
 System.out.println(o);
 }};

Lambda expression syntax
parameters -> body

§  Parameters
w None: ()
w One: x
w Two or more: (x, y)
w Types can be omitted

–  Inferred from assignee reference type
§  Body

w Expression: x + y
w Code Block: { return x + y; }

136

Type inference
§  Lambda parameter types are usually

omitted
w Compiler can infer the correct type from

the context
w Typically they match the parameter types

of the only method in the functional
interface

Comparator w/lambda
Arrays.sort(sv,

 (a,b) -> ((Student)a).id –((Student)b).id

);

Vs.
Arrays.sort(sv,new Comparator(){

 public int compare(Object a, Object b){

 return ((Student)a).id –((Student)b).id;

 }});

Method reference
§  Represent a compact representation of

an instance of a functional interface
that invoke single method.

Consumer printer;

printer = System.out::println;

printer.consume(“Hello!”);

Equivalent to:
o -> System.out.println(o);

Method reference syntax

Kind	 Example
Static method	 Class::staticMethodName

Instance method of a
particular object	 object::instanceMethodName

Instance method of an
arbitrary object of a
particular type	

Type::methodName

Constructor	 Class::new

Container::methodName

Static method reference
§  Similar to a C function

w The parameters are the same as the
method parameters

DoubleBinaryOperator combine = Math::max;

double d=combine.applyAsDouble(1.0, 3.1);

package java.util.function;
interface DoubleBinaryOperator {
 double applyAsDouble(double a, double b);
}

a,b -> Math.max(a,b)

Instance method of object
§ Method is invoked on the object

w Parameters are those of the method

String hexDigits = "0123456789ABCDEF";

Radix hex = hexDigits::charAt;

System.out.println("Hex for 10 : "

 + hex.convert(10));

interface Radix {
 char convert(int value);
}

v -> hexDigits.charAt(v)

Instance method reference
§  The first argument is the object on

which the method is invoked
w The remaining arguments are mapped to

the method arguments

StringValue f = String::charAt;

for(String e : v){

 System.out.println(f.apply(e,0));

} interface StringValue {
 char apply(String s, int i);

}

s,i -> s.charAt(i)

Constructor reference
§  The return type is a new object

w Parameters are the constructor’s
parameters

IntegerBuilder builder = Integer::new;

Integer i = builder.build(1);

interface IntegerBuilder{
 Integer build(int value);

}

i -> new Integer(i);

Wrap-up session
§  Inheritance

w Objects defined as sub-types of already existing
objects. They share the parent data/methods
without having to re-implement

§  Specialization
w Child class augments parent (e.g. adds an

attribute/method)
§  Overriding

w Child class redefines parent method
§  Implementation/reification

w Child class provides the actual behaviour of a
parent method

Wrap-up session
§  Polymorphism

w  The same message can produce different
behavior depending on the actual type of the
receiver objects (late binding of message/
method)

§  Interfaces provide a mechanism for
w Constraining alternative implementations
w Defining a common behavior
w  Behavioral parameterization

§  Functional interfaces and lambda simplify the
syntax for behavioral parameterization

