
Design Patterns

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

 Version 3.6.0
© Marco Torchiano, 2018

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

3

Pattern

A reusable solution
to a known problem

in a well defined context

…just one of the possible definitions

4

Pattern
§  Context

w  A (design) situation giving rise to a (design)
problem

§  Problem
w  Set of forces repeatedly arising in the context

–  Force: any relevant aspect of the problem (Eg.
requirements, constraints, desirable properties)

§  Solution
w  A proven resolution of the problem
w  Configuration to balance forces

–  Structure with components and relationships
–  Run-time behaviour

5

Example
§  Context:

w You are in a crowded pub to get a beer
§  Problem:

w Other people are waiting in front of you
w You want to get the beer asap
w You don’t want to start a fight

§  Solution:
w Try to spot the last person in the line
w You enter the line after her/him

6

History
§  Initially proposed by Chrisopher

Alexander
§  He described patterns for architecture

(of buildings)
w The pattern is, in short, at the same time

a thing, which happens in the world, and
the rule which tells us how to create that
thing and when we create it. It is both a
process and a thing …

7

Types of Pattern
§  Architectural Patterns

w Address system wide structures
§  Design Patterns

w Leverage higher level mechanisms
§  Idioms

w Leverage language specific features

8

Architectural pattern
§  Expresses a fundamental structural

organization schema for software
systems

§  Provides a set of predefined
components with their responsibilities

§  Defines the rules and guidelines for
organizing the relationships between
the components

9

Example
§  Context:

w  several programs that are used in sequence read
from input and write sequentially to output

§  Problem:
w  there are a lot of intermediate files used for

communication between programs
§  Solution:

w  adopt a pipe & filter architecture feeding a
program with the result of the previous one

10

Design pattern
§  Provides a scheme for refining

components of a software system or
their relationships

§  Describes a commonly recurring
structure of communicating
components

11

Example
§  Context:

w  A class library providing few functionalities
contains a lot of classes

§  Problem:
w  The user is exposed to the internal complexity of

the library
§  Solution:

w  Create a new façade class that interacts with the
user and hide all the details

12

Idiom
§  Is a low-level pattern specific to a

programming language
§  Describes how to implement particular

aspects of components or the
relationships between them

§  Leverages the features of a
programming language

13

Example
§  Context:

w two classes, very similar except some
details

§  Problem:
w double effort in maintenance

§  Solution:
w create a generic containing the common

parts, and make the classes derive from
it.

14

Pattern Description
§  Name
§  Problem
§  Context
§  Forces
§  Solution
§  Force Resolution
§  Design Rationale

§  Name
§  Intent
§  Motivation
§  Applicability
§  Structure
§  Participants
§  Collaborations
§  Consequences
§  Implementation
§  Related Patterns

15

Pattern language
§  Pattern do not exist in isolation

w Two or more patterns are applied
together

w A pattern is used to implement part of
another pattern

w A pattern can introduce a problem solved
by another

§  We have Pattern Languages
w Or pattern systems

16

Pattern Language
§  Collection of patterns together with

guidelines for
w Implementation
w Combination
w Practical use

§  Should
w Count enough patterns
w Describe patterns uniformly
w Present relationships

17

Example
§  MVC is implemented using

w Observer
w Iterator

18

Design Patterns (GoF)
§  Describe the structure of components
§  Most widespread category of pattern
§  First category of patterns proposed for

software development

19

Design Patterns (GoF)
§  Creational

w E.g. Abstract Factory, Singleton
§  Structural

w E.g. Façade, Composite
§  Behavioral

w Class: e.g. Template Method
w Object: e.g. Observer

Design patterns
§  Description of communicating objects

and classes that are customized to
solve a general design problem in a
particular context

§  A design pattern names, abstracts,
and identifies the key aspects of a
common design structure that make it
useful for creating a reusable object-
oriented design

20

Description
§  Name and classification
§  Intent

w Also known as
§  Motivation
§  Applicability
§  Structure
§  Participants
§  Collaborations

21

Description
§  Consequences
§  Implementation
§  Sample code
§  Known uses
§  Related patterns

22

Classification
§  Purpose

w Creational
w Structural
w Behavioral

§  Scope
w Class
w Object

23

Classification

Purpose

Creational Structural Behavioral

Sc
op

e Class 1 1 2

Object 4 6 10

24

Pattern selection
§  Consider how patterns solve problems
§  Scan intent sections
§  Study how pattern interrelate
§  Study patterns of like purpose
§  Examine a cause of redesign
§  Consider what should be variable in

your design

25

Using a pattern
§  Read through the pattern
§  Go back and study

w Structure
w Participants
w Collaborations

§  Look at the sample code

26

Using a pattern
§  Choose names for participants

w Meaningful in the application context
§  Define the classes
§  Choose operation names

w Application specific
§  Implement operations

27

Creational patterns
§  Factory Method
§  Abstract Factory
§  Builder
§  Prototype
§  Singleton

28

29

Abstract Factory
§  Context

w A family of related classes can have
different implementation details

§  Problem
w The client should not know anything

about which variant they are using /
creating

30

Abstract Factory Example

Client

WidgetFactory
#Operation(i: int): int
/+createWindow()
/+createButton()
...

ConcreeFactoryVista
#Operation(i: int): int
/+createWindow()
/+createButton()
...

ConcreeFactoryOSX
#Operation(i: int): int
/+createWindow()
/+createButton()
...

AbstractWindow

WindowVista WindowOSX

creates

creates

31

Abstract Factory

Client

AbstractFactory
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

ConcreeFactoryX
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

ConcreeFactoryY
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

AbstractProductA

ConcreteProductAX ConcreteProductAY

creates

creates

32

Singleton
§  Context:

w A class represents a concept that requires
a single instance

§  Problem:
w Clients could use this class in an

inappropriate way

Singleton
-Singleton()
+getInstance(): Singleton
singletonOperation()

33

Singleton
Singleton

class

Instantiation
static method

private Singleton() { }
private static Singleton instance;
public static Singleton getInstance(){
 if(instance==null)
 instance = new Singleton();
 return instance;
}

Singleton Example
§  java.awt.Toolkit

w Singleton + FactoryMethod

java.awt::Toolkit
-Toolkit()
+getDefaultToolkit(): Toolkit
...

34

Structural patterns
§  Structural patterns are concerned with

how classes and objects are composed
to form larger structures.

35

GoF structural patterns
§  Adapter
§  Bridge
§  Composite
§  Decorator
§  Facade
§  Flyweight
§  Proxy

36

37

Adapter
§  Context:

w A class provides the required features but
its interface is not the one required

§  Problem:
w How is it possible to integrate the class

without modifying it
–  Its source code could be not available
–  It is already used as it is somewhere else

38

Adapter

Client
Target

Request()

Adapter
Request()

Adaptee
SpecificRequest()adaptee

39

Adapter example

DrawingEditor Shape
BoundingBox()
CreateManipulator()

Line
BoundingBox()
CreateManipulator()

TextView
GetExtent()

TextShape
BoundingBox()
CreateManipulator()

Java Listener Adapter
§  In Java GUI events are handled by

Listeners
§  Listener classes need to implement

Listener interfaces
w Include several methods
w They all should be implemented

40

Java Listener Adapter
class MyListener{
 public void KeyPressed(..){}
 public void KeyReleased(..){
 // … handle event
 }
 public void KeyTyped(..){} }

class MyListener{
 public void KeyReleased(..){
 // … handle event
 }
}

41

Java Listener Adapter

«interface»
KeyListener

KeyPressed()
KeyReleased()
KeyTyped()

KeyAdapter
KeyPressed()
KeyReleased()
KeyTyped()

Implements

jawa.awt.event

MyListener
KeyReleased()

Extends

MyFrame

use JFrame

Extends

java.awt

42

Structural Class Patterns
§  Adapter pattern

w Inheritance plays a fundamental role
w Only example of structural class pattern

43

44

Composite
§  Context:

w You need to represent part-whole
hierarchies of objects

§  Problem
w Clients are complex
w Difference between composition objects

and individual objects.

45

Composite

Client Component
operation()
add(Component)
remove(Component)
getChild()

Composite
operation()
add(Component)
remove(Component)
getChild()

Leaf
operation()

0..*
child

Composite Example
§  Arithmetic expressions representation

w Operators
w Operands

§  Evaluation of expressions

46

Composite Example

Calculator Expression
evaluate()
print()

Operation
op: String
evaluate()
print()

Value
evaluate()
print()

0..*
operands

47

Composite Example
abstract class Expression {
 public abstract int evaluate();
 public abstract String print();
}

48

Composite Example
class Value {
 private int value;

 public Value(int v){
 value = v;
 }
 public int evaluate(){
 return value;

 }
 public String print(){
 return new String(value);
 }
}

49

Composite Example
class Operation {
 private char op; // +, -, *, /
 private Expression left, right

 public Operation(char op,
 Expression l, Expression r){

 this.op = op;
 left = l;
 right= r;
 }
…

50

Composite Example
class Operation {
…
 public evaluate(){
 switch(op){
 case ‘+’: return
 left.evaluate() +
 right.evaluate();
 break;

 …
 }
 }
…

51

Composite Example
class Operation {
…
 public print(){
 return left.print() + op +
 right.print();

 }
}

52

53

Facade
§  Context

w A functionality is provided by a complex
group of classes (interfaces, associations,
etc.)

§  Problem
w How is it possible to use the classes

without being exposed to the details

54

Facade

Client

Facade

Behavioral patterns
§  Behavioral patterns are concerned with

algorithms and the assignment of
responsibilities between objects.

§  Not just patterns of objects or classes
but also the patterns of communication.
w Complex control flow that's difficult to follow

at run-time.
w Shift focus away from flow of control to let

concentrate just on the way objects are
interconnected.

55

GoF behavioral patterns
Object-level

w Chain of
Responsibility

w Command
w Iterator
w Mediator
w Memento
w Observer
w State
w Strategy
w Visitor

Class-level
w Template Method
w Interpreter

56

Mechanisms
§  Encapsulating variation
§  Objects as arguments
§  Information circulation policies
§  Sender and Receiver decoupling

57

Encapsulating Variation
§  A varying aspect of a program
§  Captured by an object

w Other delegate operations to the “variant”
object

58

Argument Objects
§  Often an object is passed as argument

w Hides complexity from clients
w Concentrate the “active” code in one class

59

Information circulation
§  Responsibility of how to circulate

information may be:
w Distributed among different parties.
w Encapsulated in a single object.

60

Communication decoupling
§  Decoupling senders and receivers is a

key to:
w Reduce coupling
w Improve reusability
w Enforce layering and structure

61

62

Observer
§  Context:

w The change in one object may influence
one or more other objects

§  Problem
w High coupling
w Number and type of objects to be notified

may not be known in advance

63

Observer

Subject
attach(Observer)
detach(Observer)
notify()

ConcreteSubject
- state
getState()
setState()

Observer
update()0..*

 observers

ConcreteObserver
update()

Observer - Consequences
+ Abstract coupling between Subject and

Observer
+ Support for broadcast communication
- Unanticipated updates

64

Observer-Observable
§  Allow a standardized interaction

between an objects that needs to
notify one or more other objects

§  Defined in package java.util
§  Class Observable
§  Interface Observer

Observer-Observable
Class Diagram0 2016/03/02 powered by Astah

+ update() : void

Observer

+ notifyObservers() : void
+ setChanged() : void
+ addObserver() : void

Observable

+ update() : void

UnitObserver

notifies

+ longRunningTask() : void

Task

java.util

tasks

Java Observer-Observable
class Observable{
 void addObserver(..){}
 void deleteObserver(..){}
 void deleteObservers(){}
 int countObservers() {}
 void setChanged() {}
 void clearChanged() {}
 boolean hasChanged() {}
 void notifyObservers() {}
 void notifyObservers(..) {}
}

67

Observer-Observable
§  Class Observable manages:

w  registration of interested observers by means of
method addObserver()

w  sending the notification of the status change to
the observer(s) together with additional
information concerning the status (event object).

§  Interface Observer allows:
w  Receiving standardized notification of the

observer change of state through method
update() accepts two arguments:

–  Observable object that originated the notification
–  additional information (the event object)

Observer-Observable
§  Sending a notification from an

observable element involves two
steps:
w record the fact the the status of the

Observable has changed, by means of
method setChanged(),

w send the actual notification while
providing the additional information (the
event object), by means of method
notifyObservers()

Inheritance vs. composition
Reuse can be achieved via:
§  Inheritance

w The reusing class has the reused methods
available as own methods.

w Clients can invoke directly inherited methods
§  Composition

w The reusing class has the reused methods
available in an included object (attribute)

w The reusing class must provide methods that
accept clients requests and delegate to the
included object

Observer subject w/inheritance
public class Subject
 extends Observable {

 String prop="ini";

 public void setProp(String val){
 setChanged();
 property = val;
 notifyObservers("theProp");
 }

}

Observer subject w/composition
public class Subject {
 PropertyChangeSupport pcs =
 new PropertyChangeSupport(this);

 String prop=”ini";

 public void setProp(String val) {
 String old = property;
 property = val;
 pcs.firePropertyChange("theProp”,old,val);
 }
 // delegation:
 public void addObs(PropertyChangeListener l){
 pcs.addPropertyChangeListener("theProp”,l);
} }

Observer with inheritance
public class Concerned
 implements Observer {

 @Override
 public void update(Observable src,
 Object arg) {

 System.out.println("Variation of " +
 arg);
 }

}

Observer with composition
public class Concerned
 implements PropertyChangeListener {

 @Override
 public void propertyChange(
 PropertyChangeEvent evt) {

 System.out.println("Variation of " +
 evt.getPropertyName());
 }

}

Composition

75

ConcernedSubject

+ prop : string

+ addObserver(in listener: PropertyChangeListener)
+ setProp()

PropertyChangeSupport

PropertyChangeListener

PropertyChangeEvent

<<use>>

1

1+ pcs

+ listeners

*0..1

<<access>>

76

Observer Example
!"#$%

!"#$%&#
'"#$%(#
)#"#$%*#

$+#

,$+#

&$+#

*$+#

-$+#

($+#

.$+#

!# '#)#

!"#$%
/01234231#

5607289#

77

Template Method
§  Context:

w An algorithm/behavior has a stable core
and several variation at given points

§  Problem
w You have to implement/maintain several

almost identical pieces of code

AbstractClass
templateMethod()
primitiveOperation()

ConcreteClass
primitiveOperation()

...
primitiveOperation()
...
primitiveOperation()
...

78

Template Method
Core algorithm,
invokes abstract

primitive
operations

Define a
variant of the

algorithm

Template Method Example

Sorter
sort(Object)
compare()

IntegerSorter
compare()

79

Strategy
§  Context

w Many classes or algorithm has a stable
core and several behavioral variations

§  Problem
w Several different implementations are

needed.
w Multiple conditional constructs tangle the

code.

80

Strategy

Strategy
algorithmInterface()

ConcreteStrategyA
algorithmInterface()

ConcreteStrategyB
algorithmInterface()

Context
ContextInterface()

81

Strategy Example

«Interface»
Comparator

compare(Object a, Object b)

StringComparator
compare()

IntegerComparator
compare()

Collections
sort()

82

Comparator
§  Interface java.util.Comparator
public interface Comparator{
 int compare(Object a, Object b);
}

§  Semantics (as comparable): returns
w a negative integer if a precedes b
w 0, if a equals b
w a positive integer if a succeeds b

83

Note: simplified version, actual declaration uses generics

Strategy Consequences
+ Avoid conditional statements
+ Algorithms may be organized in families
+ Choice of implementations
+ Run-time binding
- Clients must be aware of different

strategies
- Communication overhead
- Increased number of objects

84

Visitor
§  Context

w An object structure contains many classes
with differing interfaces.

w Many different operations need to be
performed on the objects

§  Problem
w The operations on the objects depend on

their concrete classes
w Classes could be polluted with several

operations

85

Visitor
Visitor

viewElemA(ConcreteElemA)
ViewElemB(ConcreteElemB)

ConcreteVisitor1
viewElemA(ConcreteElemA)
viewElemB(ConcreteElemB)

ConcreteVisitor2
viewElemA(ConcreteElemA)
viewElemB(ConcreteElemB)

ConcreteElemB
accept(Visitor)

ConcreteElemA
accept(Visitor)

Element
accept(Visitor)

Client

86

Visitor Example
StatementVisitor

visitAssignment(Assignment)
visitReference(Reference)

TypeCheckingVisitor
visitAssignment(Assignment)
visitReference(Variable)

CodeGenerationVisitor
visitAssignment(Assignment)
visitReference(Reference)

Reference
accept(Visitor)

Assignment
accept(Visitor)

Statement
accept(Visitor)

Compiler

87

Visitor Consequences
+ Adding new operations is very easy
+ Behavior is partitioned
+ Can visit class hierarchies
+ State can be accumulated

- Difficult to add new concrete elements
- Break of encapsulation

88

References
§ M.Fowler, K. Scott, UML Distilled, 3rd

ed. Addison-Wesley, 2003.
§  E. Gamma, R. Helm, R. Johnson, and J.

Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

§  E.Freeman, E.Freeman, K.Sierra,
B.Bates. Head First Design Patterns,
O’Reilly, 2004

89

