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Pattern 

A reusable solution  
to a known problem  

in a well defined context 
 

 
…just one of the possible definitions 
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Pattern 
§  Context 

w  A (design) situation giving rise to a (design) 
problem 

§  Problem 
w  Set of forces repeatedly arising in the context 

–  Force: any relevant aspect of the problem (Eg. 
requirements, constraints, desirable properties) 

§  Solution 
w  A proven resolution of the problem 
w  Configuration to balance forces 

–  Structure with components and relationships 
–  Run-time behaviour 
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Example 
§  Context: 

w You are in a crowded pub to get a beer 
§  Problem: 

w Other people are waiting in front of you 
w You want to get the beer asap 
w You don’t want to start a fight 

§  Solution: 
w Try to spot the last person in the line 
w You enter the line after her/him 
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History 
§  Initially proposed by Chrisopher 

Alexander 
§  He described patterns for architecture 

(of buildings) 
w The pattern is, in short, at the same time 

a thing, which happens in the world, and 
the rule which tells us how to create that 
thing and when we create it. It is both a 
process and a thing … 
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Types of Pattern 
§  Architectural Patterns 

w Address system wide structures 
§  Design Patterns 

w Leverage higher level mechanisms 
§  Idioms 

w Leverage language specific features 
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Architectural pattern 
§  Expresses a fundamental structural 

organization schema for software 
systems 

§  Provides a set of predefined 
components with their responsibilities 

§  Defines the rules and guidelines for 
organizing the relationships between 
the components 
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Example 
§  Context:  

w  several programs that are used in sequence read 
from input and write sequentially to output 

§  Problem:  
w  there are a lot of intermediate files used for 

communication between programs 
§  Solution:  

w  adopt a pipe & filter architecture feeding a 
program with the result of the previous one 
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Design pattern  
§  Provides a scheme for refining 

components of a software system or 
their relationships 

§  Describes a commonly recurring 
structure of communicating 
components 
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Example 
§  Context:  

w  A class library providing few functionalities 
contains a lot of classes  

§  Problem:  
w  The user is exposed to the internal complexity of 

the library 
§  Solution:  

w  Create a new façade class that interacts with the 
user and hide all the details 
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Idiom 
§  Is a low-level pattern specific to a 

programming language 
§  Describes how to implement particular 

aspects of components or the 
relationships between them 

§  Leverages the features of a 
programming language 
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Example 
§  Context:  

w two classes, very similar except some 
details 

§  Problem:  
w double effort in maintenance 

§  Solution:  
w create a generic containing the common 

parts, and make the classes derive from 
it. 
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Pattern Description 
§  Name 
§  Problem 
§  Context 
§  Forces 
§  Solution 
§  Force Resolution 
§  Design Rationale 

§  Name 
§  Intent  
§  Motivation  
§  Applicability  
§  Structure  
§  Participants  
§  Collaborations  
§  Consequences  
§  Implementation  
§  Related Patterns  



15 

Pattern language 
§  Pattern do not exist in isolation 

w Two or more patterns are applied 
together 

w A pattern is used to implement part of 
another pattern 

w A pattern can introduce a problem solved 
by another 

§  We have Pattern Languages 
w Or pattern systems 
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Pattern Language 
§  Collection of patterns together with 

guidelines for 
w Implementation 
w Combination 
w Practical use 

§  Should 
w Count enough patterns 
w Describe patterns uniformly 
w Present relationships 
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Example 
§  MVC is implemented using 

w Observer 
w Iterator 
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Design Patterns (GoF) 
§  Describe the structure of components 
§  Most widespread category of pattern 
§  First category of patterns proposed for 

software development 
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Design Patterns (GoF) 
§  Creational 

w E.g. Abstract Factory, Singleton 
§  Structural 

w E.g. Façade, Composite 
§  Behavioral 

w Class: e.g. Template Method 
w Object: e.g. Observer 

Design patterns 
§  Description of communicating objects 

and classes that are customized to 
solve a general design problem in a 
particular context 

§  A design pattern names, abstracts, 
and identifies the key aspects of a 
common design structure that make it 
useful for creating a reusable object-
oriented design 
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Description 
§  Name and classification 
§  Intent 

w Also known as 
§  Motivation 
§  Applicability 
§  Structure 
§  Participants 
§  Collaborations 
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Description 
§  Consequences 
§  Implementation 
§  Sample code 
§  Known uses 
§  Related patterns 
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Classification 
§  Purpose 

w Creational 
w Structural 
w Behavioral 

§  Scope 
w Class 
w Object 
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Classification 

Purpose 

Creational Structural Behavioral 

Sc
op

e  Class 1 1 2 

Object 4 6 10 
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Pattern selection 
§  Consider how patterns solve problems 
§  Scan intent sections 
§  Study how pattern interrelate 
§  Study patterns of like purpose 
§  Examine a cause of redesign 
§  Consider what should be variable in 

your design 
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Using a pattern 
§  Read through the pattern 
§  Go back and study 

w Structure 
w Participants 
w Collaborations 

§  Look at the sample code 
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Using a pattern 
§  Choose names for participants 

w Meaningful in the application context 
§  Define the classes 
§  Choose operation names 

w Application specific 
§  Implement operations 
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Creational patterns 
§  Factory Method 
§  Abstract Factory 
§  Builder 
§  Prototype 
§  Singleton 
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Abstract Factory 
§  Context 

w A family of related classes can have 
different implementation details 

§  Problem 
w The client should not know anything 

about which variant they are using / 
creating 
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Abstract Factory Example 

Client

WidgetFactory
#Operation(i: int): int
/+createWindow()
/+createButton()
...

ConcreeFactoryVista
#Operation(i: int): int
/+createWindow()
/+createButton()
...

ConcreeFactoryOSX
#Operation(i: int): int
/+createWindow()
/+createButton()
...

AbstractWindow

WindowVista WindowOSX

creates

creates
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Abstract Factory 

Client

AbstractFactory
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

ConcreeFactoryX
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

ConcreeFactoryY
#Operation(i: int): int
/+createProductA()
/+createProductB()
...

AbstractProductA

ConcreteProductAX ConcreteProductAY

creates

creates
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Singleton 
§  Context: 

w A class represents a concept that requires 
a single instance 

§  Problem: 
w Clients could use this class in an 

inappropriate way 



Singleton
-Singleton()
+getInstance(): Singleton
singletonOperation()

33 

Singleton 
Singleton 

class 

Instantiation 
static method 

private Singleton() { } 
private static Singleton instance; 
public static Singleton getInstance(){ 
  if(instance==null)  
  instance = new Singleton(); 
  return instance; 
} 

Singleton Example 
§  java.awt.Toolkit 

w Singleton + FactoryMethod 

java.awt::Toolkit
-Toolkit()
+getDefaultToolkit(): Toolkit
...
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Structural patterns 
§  Structural patterns are concerned with 

how classes and objects are composed 
to form larger structures. 
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GoF structural patterns 
§  Adapter 
§  Bridge 
§  Composite 
§  Decorator 
§  Facade 
§  Flyweight 
§  Proxy 

36 
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Adapter 
§  Context: 

w A class provides the required features but 
its interface is not the one required 

§  Problem: 
w How is it possible to integrate the class 

without modifying it 
–  Its source code could be not available 
–  It is already used as it is somewhere else 
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Adapter 

Client
Target

Request()

Adapter
Request()

Adaptee
SpecificRequest()adaptee
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Adapter example 

DrawingEditor Shape
BoundingBox()
CreateManipulator()

Line
BoundingBox()
CreateManipulator()

TextView
GetExtent()

TextShape
BoundingBox()
CreateManipulator()

Java Listener Adapter 
§  In Java GUI events are handled by 

Listeners 
§  Listener classes need to implement 

Listener interfaces 
w Include several methods 
w They all should be implemented 
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Java Listener Adapter 
class MyListener{ 
  public void KeyPressed(..){} 
  public void KeyReleased(..){ 
    // … handle event 
  } 
  public void KeyTyped(..){} }  

class MyListener{ 
  public void KeyReleased(..){ 
    // … handle event 
  } 
} 
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Java Listener Adapter 

«interface»
KeyListener

KeyPressed()
KeyReleased()
KeyTyped()

KeyAdapter
KeyPressed()
KeyReleased()
KeyTyped()

Implements

jawa.awt.event

MyListener
KeyReleased()

Extends

MyFrame

use JFrame

Extends

java.awt
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Structural Class Patterns 
§  Adapter pattern 

w Inheritance plays a fundamental role 
w Only example of structural class pattern 
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Composite 
§  Context: 

w You need to represent part-whole 
hierarchies of objects 

§  Problem 
w Clients are complex  
w Difference between composition objects 

and individual objects. 
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Composite 

Client Component
operation()
add(Component )
remove(Component )
getChild()

Composite
operation()
add(Component )
remove(Component )
getChild()

Leaf
operation()

0..*
child

Composite Example 
§  Arithmetic expressions representation 

w Operators 
w Operands 

§  Evaluation of expressions 
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Composite Example 

Calculator Expression
evaluate()
print()

Operation
op: String
evaluate()
print()

Value
evaluate()
print()

0..*
operands
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Composite Example 
abstract class Expression { 
  public abstract int evaluate(); 
  public abstract String print(); 
}  
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Composite Example 
class Value { 
  private int value; 
 
  public Value(int v){ 
    value = v; 
  } 
  public int evaluate(){ 
 return value; 

  } 
  public String print(){ 
    return new String(value); 
  } 
}  

49 

Composite Example 
class Operation { 
  private char op; // +, -, *, / 
  private Expression left, right 
 
  public Operation(char op, 
 Expression l, Expression r){ 

    this.op = op; 
    left = l; 
    right= r; 
  } 
… 
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Composite Example 
class Operation { 
… 
  public evaluate(){ 
    switch(op){ 
      case ‘+’: return 
   left.evaluate() +  
    right.evaluate(); 
  break; 

      … 
    } 
  } 
… 
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Composite Example 
class Operation { 
… 
  public print(){ 
    return left.print() + op + 
      right.print(); 

  } 
} 

52 
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Facade 
§  Context 

w A functionality is provided by a complex 
group of classes (interfaces, associations, 
etc.) 

§  Problem 
w How is it possible to use the classes 

without being exposed to the details 

54 

Facade 

Client

Facade

 



Behavioral patterns 
§  Behavioral patterns are concerned with 

algorithms and the assignment of 
responsibilities between objects. 

§  Not just patterns of objects or classes 
but also the patterns of communication.  
w Complex control flow that's difficult to follow 

at run-time.  
w Shift focus away from flow of control to let 

concentrate just on the way objects are 
interconnected.  
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GoF behavioral patterns 
Object-level 

w Chain of 
Responsibility 

w Command 
w Iterator 
w Mediator 
w Memento 
w Observer 
w State 
w Strategy 
w Visitor 

Class-level 
w Template Method 
w Interpreter 
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Mechanisms 
§  Encapsulating variation 
§  Objects as arguments 
§  Information circulation policies 
§  Sender and Receiver decoupling 
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Encapsulating Variation 
§  A varying aspect of a program 
§  Captured by an object 

w Other delegate operations to the “variant” 
object 
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Argument Objects 
§  Often an object is passed as argument 

w Hides complexity from clients 
w Concentrate the “active” code in one class 
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Information circulation 
§  Responsibility of how to circulate 

information may be: 
w Distributed among different parties. 
w Encapsulated in a single object. 
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Communication decoupling 
§  Decoupling senders and receivers is a 

key to: 
w Reduce coupling 
w Improve reusability 
w Enforce layering and structure 
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Observer 
§  Context: 

w The change in one object may influence 
one or more other objects 

§  Problem 
w High coupling 
w Number and type of objects to be notified 

may not be known in advance 
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Observer 

Subject
attach(Observer)
detach(Observer)
notify()

ConcreteSubject
- state
getState()
setState() 

Observer
update()0..*   

       observers

ConcreteObserver
update()

Observer - Consequences 
+ Abstract coupling between Subject and 

Observer 
+ Support for broadcast communication 
- Unanticipated updates 
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Observer-Observable 
§  Allow a standardized interaction 

between an objects that needs to 
notify one or more other objects 

§  Defined in package java.util 
§  Class Observable 
§  Interface Observer 

Observer-Observable 
Class Diagram0 2016/03/02 powered by Astah 

+ update() : void

Observer

+ notifyObservers() : void
+ setChanged() : void
+ addObserver() : void

Observable

+ update() : void

UnitObserver

notifies

+ longRunningTask() : void

Task

java.util

tasks



Java Observer-Observable 
class Observable{ 
 void addObserver(..){} 
 void deleteObserver(..){} 
 void deleteObservers(){}     
 int countObservers() {} 
 void setChanged() {} 
 void clearChanged() {} 
 boolean hasChanged() {} 
 void notifyObservers() {} 
 void notifyObservers(..) {}    
}  
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Observer-Observable 
§  Class Observable manages: 

w  registration of interested observers by means of 
method addObserver() 

w  sending the notification of the status change to 
the observer(s) together with additional 
information concerning the status (event object). 

§  Interface Observer allows: 
w  Receiving standardized notification of the 

observer change of state through method 
update() accepts two arguments:  

–  Observable object that originated the notification  
–  additional information (the event object) 



Observer-Observable 
§  Sending a notification from an 

observable element involves two 
steps: 
w record the fact the the status of the 

Observable has changed, by means of 
method setChanged(), 

w send the actual notification while 
providing the additional information (the 
event object), by means of method 
notifyObservers() 

Inheritance vs. composition 
Reuse can be achieved via: 
§  Inheritance 

w The reusing class has the reused methods 
available as own methods. 

w Clients can invoke directly inherited methods 
§  Composition 

w The reusing class has the reused methods 
available in an included object (attribute) 

w The reusing class must provide methods that 
accept clients requests and delegate to the 
included object 



Observer subject w/inheritance 
public class Subject 
    extends Observable { 

 
  String  prop="ini"; 
  

  public void setProp(String val){ 
    setChanged(); 
    property = val; 
    notifyObservers("theProp"); 
  } 
 
 
 
} 

Observer subject w/composition 
public class Subject { 
  PropertyChangeSupport pcs =  
    new PropertyChangeSupport(this); 

  String  prop=”ini"; 
  

  public void setProp(String val) { 
    String old = property; 
    property = val; 
    pcs.firePropertyChange("theProp”,old,val); 
  } 
  // delegation: 
  public void addObs(PropertyChangeListener l){ 
    pcs.addPropertyChangeListener("theProp”,l); 
} } 



Observer with inheritance 
public class Concerned  
    implements Observer { 

 
  @Override 
  public void update(Observable src,  
          Object arg) { 

    System.out.println("Variation of " +  
          arg); 
 } 

 
} 

Observer with composition 
public class Concerned  
       implements PropertyChangeListener { 
 
  @Override 
  public void propertyChange( 
       PropertyChangeEvent evt) { 

    System.out.println("Variation of " + 
           evt.getPropertyName()); 
 } 

 
} 



Composition 
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ConcernedSubject

+ prop : string

+ addObserver(in listener: PropertyChangeListener)
+ setProp()

PropertyChangeSupport

PropertyChangeListener

PropertyChangeEvent

<<use>>

1

1+ pcs

+ listeners

*0..1

<<access>>
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Observer Example 
!"#$%

!"#$%&#
'"#$%(#
)#"#$%*#

$+#

,$+#

&$+#

*$+#

-$+#

($+#

.$+#

!# '# )#

!"#$%
/01234231#

5607289#
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Template Method 
§  Context: 

w An algorithm/behavior has a stable core 
and several variation at given points 

§  Problem 
w You have to implement/maintain several 

almost identical pieces of code 

AbstractClass
templateMethod()
primitiveOperation()

ConcreteClass
primitiveOperation()

...
primitiveOperation()
...
primitiveOperation()
...
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Template Method 
Core algorithm, 
invokes abstract 

primitive 
operations 

Define a 
variant of the 

algorithm 



Template Method Example 

Sorter
sort(Object)
compare()

IntegerSorter
compare()
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Strategy 
§  Context 

w Many classes or algorithm has a stable 
core and several behavioral variations 

§  Problem 
w Several different implementations are 

needed. 
w Multiple conditional constructs tangle the 

code. 
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Strategy 

Strategy
algorithmInterface()

ConcreteStrategyA
algorithmInterface()

ConcreteStrategyB
algorithmInterface()

Context
ContextInterface()
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Strategy Example 

«Interface»
Comparator

compare(Object a, Object b)

StringComparator
compare()

IntegerComparator
compare()

Collections
sort()
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Comparator 
§  Interface java.util.Comparator 
public interface Comparator{ 
  int compare(Object a, Object b); 
} 

§  Semantics (as comparable): returns  
w a negative integer if a precedes b 
w 0, if a equals b 
w a positive integer if a succeeds b 
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Note: simplified version, actual declaration uses generics 

Strategy Consequences 
+ Avoid conditional statements 
+ Algorithms may be organized in families 
+ Choice of implementations 
+ Run-time binding 
- Clients must be aware of different 

strategies 
- Communication overhead 
- Increased number of objects 
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Visitor 
§  Context 

w An object structure contains many classes 
with differing interfaces. 

w Many different operations need to be 
performed on the objects 

§  Problem 
w The operations on the objects depend on 

their concrete classes 
w Classes could be polluted with several 

operations 
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Visitor 
Visitor

viewElemA(ConcreteElemA)
ViewElemB(ConcreteElemB)

ConcreteVisitor1
viewElemA(ConcreteElemA)
viewElemB(ConcreteElemB)

ConcreteVisitor2
viewElemA(ConcreteElemA)
viewElemB(ConcreteElemB)

ConcreteElemB
accept(Visitor)

ConcreteElemA
accept(Visitor)

Element
accept(Visitor)

Client
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Visitor Example 
StatementVisitor

visitAssignment(Assignment)
visitReference(Reference)

TypeCheckingVisitor
visitAssignment(Assignment)
visitReference(Variable)

CodeGenerationVisitor
visitAssignment(Assignment)
visitReference(Reference)

Reference
accept(Visitor)

Assignment
accept(Visitor)

Statement
accept(Visitor)

Compiler
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Visitor Consequences 
+ Adding new operations is very easy 
+ Behavior is partitioned 
+ Can visit class hierarchies 
+ State can be accumulated 
 
- Difficult to add new concrete elements 
- Break of encapsulation 
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