
Verification and Validation

Version 1.1.0 � May 2018
© Maurizio Morisio, Marco Torchiano, 2017

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Development process

Integrate
units

Design

Requirements
engineering Requirement

document

Design
document

Unit
 Unit

System

Implement
unit

VV system

VV design

VV requirements

VV unit

VV unit

Requirement
document

Design
document

Unit
 Unit

System

Project management 
Configuration management 
Quality management

Implement
unit

V&V
§  Validation

w  is it the right software system?
w  effectiveness
w  external (vs. user)
w  reliability

§  Verification
w  is the software system right?
w  efficiency
w  internal (correctness of transformations)
w  correctness

4

V&V

What the customer
asked for

How the analyst
saw it

How the system
was designed

As the programmer
wrote it

How it actually works

What the customer
had in mind

Verification

Validation

V & V

validation stakeholders
Design  
 document

Requirement
document

Unit

Unit

System

ve
rif

ic
at

io
n

TERMINOLOGY

Failure, fault, defect
§  Error

w A mistake e.g. committed by a programmer
§  Fault (Bug)

w The feature of software that causes a failure
w May be due to:

–  An error in software
–  Incomplete/incorrect requirements

§  Failure
w An execution event where the software behaves

in an unexpected way
§  Defect

w Typically a fault (sometimes a failure)

Error-Fault-Failure

Error

Fault

Failure

Causes

Causes

9

Insertion / removal
§ Defect is characterized by

w Insertion activity (phase)
w Discovery
w Removal activity (phase)

time
removal

insertion discover

detection
delay

removal delay

Cost of detection delay

!"

#$"

$!"

%$"

&'()*+','-./" 0+12*.'1.)+'" 34-/.+)154-" 67/.',"8'/." 94/.:&';'</'"

&'()*+','-./"

0+12*.'1.)+'"

34-/.+)154-"

€

11

Basic goals of VV
§ Minimize number of defects inserted

w Cannot be zero due to inherent
complexity of software

§ Maximize number of defects
discovered and removed
w Cannot prove 100% is achieved

§ Minimize detection delay

V&V approaches
§  Static

w inspections
w source code analysis

§ Dynamic
w testing

STATIC ANALYSIS

14

Static analysis techniques
§  Compilation static analysis
§  Control flow analysis
§ Data flow analysis
§  Symbolic execution
§  Inspections

Automatic code analysis
§  It is performed

w without actually executing programs (at
compile time) ‏

w On source code, or byte code

Source code,

byte code
Automatic

code
analyzer

warnings

rules(customizable) ‏

Code smells
§  A code smell is a surface indication

that usually corresponds to a deeper
problem in the system

§  Smells are certain structures in the
code that indicate violation of
fundamental design principles and
negatively impact design quality

Fowler et al., Refactoring, Improving quality of existing code. Addison-Wesley

17

Technical Debt
§  Technical debt reflects the extra

development work that arises when
code that is easy to implement in the
short run is used instead of applying
the best overall solution

18

Technical Debt
§  “Shipping first time code is like going

into debt. A little debt speeds
development so long as it is paid back
promptly with a rewrite... The danger
occurs when the debt is not repaid.
Every minute spent on not-quite-right
code counts as interest on that debt.”

[W.Cunningham]

19

Tools
§  Static Analysis

w SonarQube
w Cast

20

TESTING

Definition
The process of

operating a system or component
under specified conditions

observing and recording the results
to detect the differences between actual

and expected behavior (i.e. failures)

Purpose of test
§  The purpose of testing process is to

find defects in software products
w A test process is successful if it is able to

detect failures

Testing vs. debugging
§ Defect testing and debugging are

different activities
w Often performed by different roles in

different times
§  Testing tries to detect failures
§ Debugging searches for the location of

the relative faults and removes them

Debugging

Locate
fault

Test case
result

(failure)

Design
fault

repair
Repair
(code) Re-test

Test suite Design
doc

Test case
§  A given stimulus applied to executable

(system or unit), consists in
w name
w input (or sequence of -)
w expected output

§ With defined constraints/context
w E.g. version and type of OS, DBMS, GUI ..

§  Test suite = set of related test cases

Good test case
§  Reasonable chance of catching failure
§ Does interesting things
§ Doesn’t do unnecessary things
§ Neither too simple nor too complex
§ Non redundant w.r.t. other tests
§ Makes failures obvious
§ Mutually Exclusive
§  Collectively Exhaustive

Test case log
§  Test case reference

 +
§  Time and date of application
§  Actual output
§  Result (pass / no pass)

Test cases examples
§  Function add(int x, int y)
§  Test case:

w T1: (1,1; 2)
w T2: (3,5; 8)

§  Test suite
w TS1: {T1, T2}

§  Test log
w T1, 16-3-2018 9:31, result 2, success
w T2, 16-3-2018 9:32, result 9, fail

Test activities

Write
tests

Requirement doc,
design doc

Run
tests

Record
results

Test case,
test suite Test log

Code

Oracle

Test Case

Software
under test

Oracle

Comparator

Actual  
output

Expected  
output

Test  
result

Oracle
§  The ideal condition would be to have

an automatic oracle and an automatic
comparator
w The former is very difficult to have
w The latter is available only in some cases

§  A human oracle is subject to errors
§  The oracle is based on the program

specifications (which can be wrong)

Oracle
§  Necessary condition to perform testing:

w Know the expected behavior of a program for
a given test case (oracle)

§  Human oracle
w Based on req. specification or judgment

§  Automatic oracle
w Generated from (formal) req. specification
w Same software developed by other parties
w Previous version of the program (regression)

Software peculiarities
§ No ageing

w If function sum(2,3) works, it works
forever
– Supporting microprocessor will eventually fail

for age, not the software

§ Not linear, not continuous
w If sum(2,3) works, may be sum(2,4) does

not

Exhaustive test
§  function: Y = A + B
§  A and B integers, 32 bit

§  Total number of test cases:  
232 * 232 = 264 ≈ 1020

§  1 ns/test ⇒ ~ 3171 years

Exhaustive test
§  Exhaustive test is impossible
§  Goal of test is finding defects, not

demonstrating that systems is defect
free

§  Final objective of test (and VV in
general) is assuring a good enough
level of quality, confidence in sw

Dijkstra thesis
§  Testing can only reveal the presence

of errors, never their absence

E. W. Dijkstra. Notes on Structured Programming.  
In Structured Programming, O.-J. Dahl, E. W. Dijkstra, and C. A.
R. Hoare, Eds. Academic, New York, 1972, pp. 1–81.

Test classification
§  Per phase/granularity level

w Unit, integration, system
w Regression

§  Per approach
w Black box (functional)
w White box (structural)
w Reliability assessment/prediction
w Risk based (safety security)

Test per granularity level/phase

§  Unit tests
w Individual modules

§  Integration tests
w Modules when working together

§  System tests
w The system as a whole (usable system)

§  Acceptance tests
w The system by customer

Unit test
§  Black box (functional)

w Random
w Equivalence classes partitioning
w Boundary conditions

§  White Box (structural)
w Coverage of structural elements

–  Statement
– Decision, condition (simple, multiple)
–  Path
–  Loop

Integration test
§  Add one unit at a time, test the partial

aggregate
w Defects found, most likely, come by last

unit/interaction added

Stub, driver
§ Driver

w Unit (function or class) developed to pilot
another unit

§  Stub
w Unit developed to substitute another unit

(fake unit)

§  Also called mockups

System test
§  Is applied to the software system as a whole

w Aims at verifying the correspondence of the
system to the requirements

§  Test of functional requirements
w Coverage of uses cases/scenarios as listed in

requirement document
w Consider usage profile (the most common,

typical ways of using the system)
§  Test in conditions as far as possible close to

working conditions

Regression testing
§  Regression testing

w Tests previously defined are repeated
after a change

w To assure that the change has not
introduced defects
– Time0

–  Element (unit, system) in v0, test set t0 is defined
and applied, all tests pass

– Time1
–  Element is changed to v1
–  Test set t0 is re-applied, do all tests still pass?

Regression testing

Run tests

Test suite

Element v. x Element v. x+1

Run tests

References and Further Readings
§  IEEE Std 829-2008: IEEE Standard for

Software and System Test Documentation
§  Fowler et al., Refactoring, Improving quality

of existing code. Addison-Wesley
§  E. W. Dijkstra. Notes on Structured

Programming. In Structured Programming,
O.-J. Dahl, E. W. Dijkstra, and C. A. R.
Hoare, Eds. Academic, New York, 1972, pp.
1–81.

46

