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V&V 
§  Validation 

w  is it the right software system? 
w  effectiveness 
w  external (vs. user) 
w  reliability 

§  Verification 
w  is the software system right? 
w  efficiency 
w  internal (correctness of transformations) 
w  correctness 
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TERMINOLOGY 

Failure, fault, defect 
§  Error 

w A mistake e.g. committed by a programmer 
§  Fault (Bug) 

w The feature of software that causes a failure 
w May be due to: 

–  An error in software 
–  Incomplete/incorrect requirements 

§  Failure 
w An execution event where the software behaves 

in an unexpected way 
§  Defect 

w Typically a fault (sometimes a failure) 
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Insertion / removal 
§ Defect is characterized by   

w Insertion activity (phase) 
w Discovery 
w Removal activity (phase) 

time 
removal 

insertion discover 

detection 
delay 

removal delay 



Cost of detection delay 

!"

#$"

$!"

%$"

&'()*+','-./" 0+12*.'1.)+'" 34-/.+)154-" 67/.',"8'/." 94/.:&';'</'"

&'()*+','-./"

0+12*.'1.)+'"

34-/.+)154-"

€ 

11 

Basic goals of VV 
§ Minimize number of defects inserted 

w Cannot be zero due to inherent 
complexity of software 

§ Maximize number of defects 
discovered and removed 
w Cannot prove 100% is achieved 

§ Minimize detection delay 



V&V approaches 
§  Static 

w inspections 
w source code analysis 

§ Dynamic 
w testing 

STATIC ANALYSIS 
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Static analysis techniques 
§  Compilation static analysis 
§  Control flow analysis 
§ Data flow analysis 
§  Symbolic execution 
§  Inspections 

Automatic code analysis 
§  It is performed  

w without actually executing programs (at 
compile time)  ‏

w On source code, or byte code 
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Code smells 
§  A code smell is a surface indication 

that usually corresponds to a deeper 
problem in the system 

§  Smells are certain structures in the 
code that indicate violation of 
fundamental design principles and 
negatively impact design quality 

Fowler et al., Refactoring, Improving quality of existing code. Addison-Wesley 
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Technical Debt 
§  Technical debt reflects the extra 

development work that arises when 
code that is easy to implement in the 
short run is used instead of applying 
the best overall solution 
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Technical Debt 
§  “Shipping first time code is like going 

into debt. A little debt speeds 
development so long as it is paid back 
promptly with a rewrite... The danger 
occurs when the debt is not repaid. 
Every minute spent on not-quite-right 
code counts as interest on that debt.”  

[W.Cunningham] 
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Tools 
§  Static Analysis 

w SonarQube 
w Cast 
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TESTING 

Definition 
The process of  

operating a system or component  
under specified conditions  

observing and recording the results  
to detect the differences between actual 

and expected behavior (i.e. failures) 



Purpose of test 
§  The purpose of testing process is to 

find defects in software products 
w A test process is successful if it is able to 

detect failures 

Testing vs. debugging 
§ Defect testing and debugging are 

different activities  
w Often performed by different roles in 

different times 
§  Testing tries to detect failures 
§ Debugging searches for the location of 

the relative faults and removes them 
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Test case 
§  A given stimulus applied to executable 

(system or unit), consists in 
w name 
w input (or sequence of -) 
w expected output 

§ With defined constraints/context  
w E.g. version and type of OS, DBMS, GUI .. 

§  Test suite = set of related test cases 



Good test case 
§  Reasonable chance of catching failure 
§ Does interesting things 
§ Doesn’t do unnecessary things 
§ Neither too simple nor too complex 
§ Non redundant w.r.t. other tests 
§ Makes failures obvious 
§ Mutually Exclusive 
§  Collectively Exhaustive 

Test case log 
§  Test case reference  

 + 
§  Time and date of application 
§  Actual output 
§  Result (pass / no pass) 



Test cases examples 
§  Function add(int x, int y) 
§  Test case:  

w T1: (1,1; 2) 
w T2: (3,5; 8) 

§  Test suite 
w TS1: {T1, T2} 

§  Test log 
w T1, 16-3-2018 9:31, result 2, success 
w T2, 16-3-2018 9:32, result 9, fail 
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Oracle 
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Oracle 
§  The ideal condition would be to have 

an automatic oracle and an automatic 
comparator 
w The former is very difficult to have 
w The latter is available only in some cases 

§  A human oracle is subject to errors 
§  The oracle is based on the program 

specifications (which can be wrong) 



Oracle 
§  Necessary condition to perform testing: 

w Know the expected behavior of a program for 
a given test case (oracle) 

§  Human oracle 
w Based on req. specification or judgment 

§  Automatic oracle 
w Generated from (formal) req. specification 
w Same software developed by other parties 
w Previous version of the program (regression) 

Software peculiarities 
§ No ageing  

w If function sum(2,3) works, it works 
forever 
– Supporting microprocessor will eventually fail 

for age, not the software 

§ Not linear, not continuous 
w If sum(2,3) works, may be sum(2,4) does 

not 



Exhaustive test 
§   function: Y = A + B 
§   A and B integers, 32 bit 

§  Total number of test cases:  
232 * 232 = 264 ≈ 1020 

§   1 ns/test ⇒ ~ 3171 years 

Exhaustive test 
§  Exhaustive test is impossible 
§  Goal of test is finding defects, not 

demonstrating that systems is defect 
free 

§  Final objective of test (and VV in 
general) is assuring a good enough 
level of quality, confidence in sw 



Dijkstra thesis 
§  Testing can only reveal the presence 

of errors, never their absence  

E. W. Dijkstra. Notes on Structured Programming.  
In Structured Programming, O.-J. Dahl, E. W. Dijkstra, and C. A. 
R. Hoare, Eds. Academic, New York, 1972, pp. 1–81.  

Test classification 
§  Per phase/granularity level 

w Unit, integration, system 
w Regression 

§  Per approach 
w Black box (functional) 
w White box (structural) 
w Reliability assessment/prediction  
w Risk based (safety security) 



Test per granularity level/phase 

§  Unit tests 
w Individual modules 

§  Integration tests 
w Modules when working together 

§  System tests 
w The system as a whole (usable system) 

§  Acceptance tests 
w The system by customer 

Unit test 
§  Black box (functional) 

w Random 
w Equivalence classes partitioning 
w Boundary conditions 

§  White Box (structural) 
w Coverage of structural elements 

–  Statement 
– Decision, condition (simple, multiple) 
–  Path 
–  Loop 



Integration test 
§  Add one unit at a time, test the partial 

aggregate 
w Defects found, most likely, come by last 

unit/interaction added 

Stub, driver 
§ Driver 

w Unit (function or class) developed to pilot 
another unit 

§  Stub 
w Unit developed to substitute another unit 

(fake  unit) 
 
§  Also called mockups 



System test 
§  Is applied to the software system as a whole 

w Aims at verifying the correspondence of the 
system to the requirements 

§  Test of functional requirements 
w Coverage of uses cases/scenarios as listed in 

requirement document 
w Consider usage profile (the most common, 

typical ways of using the system) 
§  Test in conditions as far as possible close to 

working conditions 
 

Regression testing 
§  Regression testing 

w Tests previously defined are repeated 
after a change 

w To assure that the change has not 
introduced defects  
– Time0 

–  Element (unit, system ) in v0, test set t0 is defined 
and applied, all tests pass 

– Time1 
–  Element is changed to v1 
–  Test set t0 is re-applied, do all tests still pass? 



Regression testing 

Run tests  

Test suite  

Element v. x Element v. x+1 

Run tests  
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