
Configuration Management

Version 1.1.0 - May 2018
© Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

3

Learning objectives
§  Understand what is configuration

management
w What is Version Control
w What are the main concepts of VC

§  Know the main tools for version
control

§  Learn how SVN can be used for CM

Configuration Management
§  The discipline that applies technical and

administrative direction and surveillance
in order to:
w  identify and document the functional and

physical characteristics of a configuration
item,

w control changes to those characteristics,
w record and report change processing and

implementation status, and
w verify compliance with specified

requirements

[IEEE Std 828-2012]

4

Issues
§  What is the history of a document?

w Versioning
§  Who can access and change what?

w Change control
§  What is the correct set of documents for

a specific need?
w Configuration

§  How the delivered system is obtained?
w Build management

5

Goals of CM
§  Identify and manage parts of software
§  Control access and changes to parts
§  Allow to rebuild previous version of

software

6

VERSIONING

7

Versioning

Thesis.docx ThesisFinal.docx ThesisFinal  
Final.docx

ThesisFinalest  
FinalForsure.docx

ThesisFinalestF**k
FinalForsure.docx

ThesisFinalest  
Final.docx

8

Terms
§  Configuration item (CI)
§  Configuration Management aggregate
§  Configuration
§  Version
§  Baseline

9

Configuration Item (CI)
§  Aggregation of work products that is

treated as a single entity in the
configuration management process

§  CI (typically a file):
w Has a name
w All its versions are numbered and kept
w User decides to change version number with

specific operation (commit)
w  It is possible to retrieve any previous version

10

Version
§  The initial release or a re-release of a

configuration item
§  Instance of CI, e.g.

w Req document 1.0
w Req document 1.1

11

Version identification
§  Procedures for version identification

should define an unambiguous way of
identifying component versions

§  Basic techniques for component
identification
w  Version numbering
w  Attribute-based identification

12

Version numbering
§  Simple naming scheme uses a linear

derivation  
e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

§  Actual derivation structure is a tree or
a network rather than a sequence

§ Names are not meaningful.
§ Hierarchical naming scheme may be

better

13

Configuration

§  Set of CIs, each in a specific version

config 1

config 2

ClassA 1.0

config 3

ClassB 1.1

ClassA 1.1

ClassB 1.0

baseline
14

Configuration
§  Snapshot of software at certain time

w Various CIs, each in a specific version
w Same CI may appear in different

configurations
w Also configuration has version

15

Baseline
§  Configuration in stable, frozen form

w Not all configurations are baselines
w Any further change / development will

produce new version(s) of CI(s), will not
modify baseline

§  Types of baselines
w Development – for internal use
w Product – for delivery

16

Semantic Versioning
§  Product numbering based on

MAJOR.MINOR.PATCH
§  Increment:

w MAJOR: when you make large (possibly
incompatible) API changes,

w MINOR: when you add functionality in a
backwards-compatible manner, and

w PATCH: when you make backwards-
compatible bug fixes.

17

http://semver.org

CHANGE CONTROL

18

Repository
§  A collection of all software-related

artifacts belonging to a system
§  The location/format in which such a

collection is stored

19

Typical case
§  Team develops software
§ Many people need to access different

parts of software
w Common repository (shared folder),
w Everybody can read/write documents/files

20

Change control - repository

repository copy

copy

copy

copy

21

Repository - file server

repository
with file
server

1 copy doc.doc

2 copy doc.doc

3 copy doc.doc
4 copy doc.doc

John

Mary

Changes by John are lost

22

File system limitations

The lock-modify-unlock solution
Many version control systems use a lock-modify-unlock model to address the problem of many authors clobbering each other's
work. In this model, the repository allows only one person to change a file at a time. This exclusivity policy is managed using
locks. Harry must “lock” a file before he can begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and
therefore cannot make any changes to that file. All she can do is read the file and wait for Harry to finish his changes and release
his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock
solution” demonstrates this simple solution.

Figure 1.3. The lock-modify-unlock solution

Fundamental Concepts

3

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato 23

Check-in / check-out
§  Check-out

w Extraction of CI from repository
– with goal of changing it or not
– After checkout next users are notified

§  Check-in (or commit)
w Insertion of CI under control

24

Repository – check in checkout

repository
with CM tool

1 checkout doc.doc v x

2 checkin doc.doc v x+1

John

25

Check-in / check-out - scenarios

§  Lock-modify-unlock (or serialization)
w Only one developer can change at a time

§  Copy-modify-merge
w Many change in parallel, then merge

26

Lock-Modify-Unlock

The problem with the lock-modify-unlock model is that it's a bit restrictive and often becomes a roadblock for users:

• Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Meanwhile, because
Sally is still waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now Sally has to get an administrator
to release Harry's lock. The situation ends up causing a lot of unnecessary delay and wasted time.

• Locking may cause unnecessary serialization.What if Harry is editing the beginning of a text file, and Sally simply wants to edit
the end of the same file? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm
would come, assuming the changes were properly merged together. There's no need for them to take turns in this situation.

• Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously locks and edits
file B. But what if A and B depend on one another, and the changes made to each are semantically incompatible? Suddenly A
and B don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided a false
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus
they need not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution
Subversion, CVS, and many other version control systems use a copy-modify-merge model as an alternative to locking. In this
model, each user's client contacts the project repository and creates a personal working copy. Users then work simultaneously and

Fundamental Concepts

4

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato 27

Lock-Modify-Unlock
§  Pro

w Conflicts are impossible
§  Cons

w No parallel work is possible, large delays
can be induced

w Developers can possibly forget to unlock
so blocking the whole team

28

Copy-Modify-Merge

independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that his file A is out of date. In other words, file A in the repository
has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his work-
ing copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modi-
fy-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Figure 1.5. The copy-modify-merge solution (continued)

Fundamental Concepts

5

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato
But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not
much of a problem. When Harry asks his client to merge the latest repository changes into his working copy, his copy of file A is
somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting changes and manually choose between
them. Note that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel,
never waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at
all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time lost by a locking
system.

In the end, it all comes down to one critical factor: user communication. When users communicate poorly, both syntactic and se-
mantic conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So
there's no point in being lulled into a false sense of security that a locking system will somehow prevent conflicts; in practice, lock-
ing seems to inhibit productivity more than anything else.

When Locking Is Necessary

While the lock-modify-unlock model is considered generally harmful to collaboration, sometimes locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is, that the majority of
the files in the repository are line-based text files (such as program source code). But for files with binary formats, such as

Fundamental Concepts

6

29

Copy-Modify-Merge
§  Pros

w More flexible
w Several developers can work in parallel
w No developer can block others

§  Con
w Requires care to resolve the conflicts

30

Branches: general concept
§  Line of development that exists

independently of another line, yet still
shares a common history when looking far
enough back in time.

§  A branch always takes life as a copy of
something, and moves on from there,
independently generating  
its own history

31

Branches: motivation
§  Branches allow working in isolation

form the main branch
w Several new features or fixes can be

developed independently and
concurrently

w When work is complete it can be merged
into the main branch

§  Branches may also represent different
configurations, e.g. by platform

32

Tools
§  Change Control+Versioning+Configuration

w RCS
w CVS
w  SCCS
w  PCVS
w  Subversion
w  BitKeeper
w Git

33

BUILD MANAGEMENT

34

Build management
§  Prepare the environment
§  Gather third party components
§  Gather source code
§  Compile
§  Create packages
§  Run tests
§ Deploy

35

Tools
§  Build management

w Make
w Ant
w Maven
w Gradle

36

Continuous Integration
§  Maintain a single source repository
§  Automate the build
§  Make your build self-testing
§  Any commit build on integration machine

w Keep the build fast
§  Test in a clone of the production

environment
§  Automate deployment

37

Continuous integration
§  Commit frequently
§ Don’t commit broken code
§ Don’t commit untested code
§ Don’t commit when the build is

broken
§ Don’t go home after committing until

the system builds

38

Tool CI
§  Continuous Integration

w Travis CI
w Jenkins
w Cruise Control

39

VERSION CONTROL WITH
SUBVERSION

40

What is Subversion
§  Free/open-source version control

system:
w it manages any collection of files and

directories over time in a central
repository;

w it remembers every change ever made to
your files and directories;

w it can access its repository across
networks

41

Features
§  Directory versioning and true version

history
§  Atomic commits
§  Metadata versioning
§  Several topologies of network access
§  Consistent data handling
§  Branching and tagging
§  Usable by other applications and

languages

42

Architecture

43

The repository
§  Central store of data
§  It stores information in the form of a

file system
§  Any number of clients connect to the

repository, and then
w read (update) or
w write (commit) to these files.

44

The working copy (WC)
§ Ordinary directory tree on your local

system, containing a copy of the
repository files (checkout)

§  Subversion will never incorporate
other people's changes (update), nor
make your own changes available to
others (commit), until you explicitly
tell it to do so.

45

Revisions
§  Each time the repository accepts a commit, it

creates a new state of the file system tree,
called a revision.

§  Global revision numbers: each revision is
assigned a progressive unique natural
number (previous revision + 1)
w An freshly created repository has revision 0

(zero)
§  The whole repo gets a new revision number

w Revision N represents the state of the repository
after the Nth commit.

46

Svn – version identification
§  In subversion a version is called à revision
§  Each configuration has a new number
§  Each element changes revision, even if has not been

changed

A

B

1 2 3 4

A�

B�

A

B

revision#

A�

5

B�

47

Mixed revisions
§  Suppose you have a working copy entirely at revision 10. You

edit the file foo.html and then perform an svn commit, which
creates revision 15 in the repository.

§  Therefore the only safe thing the Subversion client can do is
mark the one file—foo.html—as being at revision 15. The rest
of the working copy remains at revision 10. This is a mixed
revision.

§  Only by running svn update can the latest changes be
downloaded, and the whole working copy be marked as
revision 15.

§  Memento:
w  Every time you run svn commit, your working copy ends up

with some mixture of revisions: the things you just committed
are marked as having larger working revisions than everything
else.

48

Basic Procedure
§  Create working copy from a repository

w svn checkout <repository>
When ready…

§  Synchronize contents of WC with repo
w svn update
Work on WC

§  Possibly add new files
w svn add <file list>

§  Push work to repository
w svn commit –m ”<Log message>"

49

Commit Log Message
§  Structure of the message

<type>(<scope>): <subject>
<body>
<footer>

§  Example
fix(middleware): ensure Range headers
adhere more closely to RFC 2616
Added one new dependency, use `range-
parser` (Express dependency) to compute
range. It is more well-tested in the
wild.
Fixes #2310

50

http://karma-runner.github.io/1.0/dev/git-commit-msg.html

Conflicts
§  A conflict arise, upon commit, if the file

has been updated in the meanwhile
w N: the revision (BASE) that was modified

–  the repo revision at the time of last update
w M: the current revision (HEAD) in the

repository (≥N)
§  A conflict occurs if:

w M > N and
w Contents of revisions M and N differ

51

Conflicts
§  Subversion places three extra unversioned files in

the working copy:
w  filename.mine : the local file as it existed in the

working copy before the update
–  This file has only the latest local changes in it.

w  filename.rOLDREV : the file that was the BASE
revision before the update.

–  The file checked out before any local edit.
w  filename.rNEWREV : the file that Subversion client

just received from the server upon update.
–  The HEAD revision of the repository.

§  The original file contains a mix version of HEAD
(.rNEW) and BASE (.mine) with change markers

52

Conflict example
§  You and Sally both edit file sandwich.txt at

the same time. Sally commits her changes,
and when you go to update your working
copy, you get a conflict

$ svn update

Conflict discovered in 'sandwich.txt'.

Select: (p)postpone,(df)diff-full,(e)edit,

 (h)elp for more options : p

C sandwich.txt

Updated to revision 2.

53

Conflict example
§  In your working copy you get
$ ls

sandwich.txt

sandwich.txt.mine

sandwich.txt.r1

sandwich.txt.r2

§  You're going to have to edit
sandwich.txt to resolve the conflicts

54

Conflict example
§  The contents of the file sandwich.txt is

Top piece of bread
Mayonnaise
Lettuce
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2
Creole Mustard
Bottom piece of bread

Changes your made in
the conflicting area

Changes Sally previously
committed in the area

55

Conflict example
§  The updated file sandwich.txt you

create and saved is

Top piece of bread
Mayonnaise
Lettuce
Mortadella
Prosciutto
Grilled Chicken
Creole Mustard
Bottom piece of bread

Pick and choose
“by hand”

56

Conflict example
§ Once the conflict has been composed

you ought to signal it has been
resolved

$ svn resolve --accept working sandwich.txt

Resolved conflicted state of 'sandwich.txt'

$ svn commit -m ”Pick and choosen.”

57

Typical work cycle
Update your working copy

• svn update
 Make changes

• svn copy • svn add
• svn delete • svn move
 Examine your changes

• svn status
• svn diff

• svn revert

Merge others' changes into
your working copy

• svn update • svn resolve

Commit your changes
• svn commit

58

Branches in Subversion
§  Branches in subversion

w exist as normal filesystem directories in the
repository

–  carry some extra historical information
– Do not exist in some “extra dimension”

§  Subversion has no internal concept of a
branch—only copies.
w A directory becomes a branch because that is

how we interpret it
w Any copy brings also the previous history

59

Branches in Subversion
You create a branche with svn copy:

 $ svn copy /trunk \

/calc/branches/my-calc-branch \

Memento:
Use svn switch to receive updates

of the trunk in your branch

60

Subversion repo structure
§  To use branches a repository contains

two top-level folders:
w trunk: contains the main branch
w branches: contain the branches

– one sub-folder for each branch
w tags: contains snapshot of a branch

– One sub-folder per tag (version)
– Copies created keep a frozen baseline

– Note: those names are conventional

61

Merge
§  When work is done in a branch, it must be

brought back into the trunk.
§  This is done by svn merge command.

w  Similar to svn diff command, instead of
printing the differences to your terminal, it
applies them directly to the local working copy.
Svn diff command ignores ancestry, svn merge
does not.

w Two repository trees are compared, and the
differences are applied to a working copy.

§  Conflicts may be produced by svn merge:
w They are solved in the usual way

62

Wrap-up session
§  Configuration management deals with

several issues:
1.  Versioning
2.  Configuration
3.  Change control
4.  Build management

§  Subversion is an open-source platform
supporting 1, 2, 3

63

References and Further Readings
§  IEEE STD 1042 – 1987 IEEE guide to software

configuration management
§  IEEE STD 828-2012: IEEE Standard for

Configuration Management in Systems and
Software Engineering

§  B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato.
Version Control with Subversion: For
Subversion 1.7, 2011

§  Semantic Versioning. http://semver.org
§  M.Fowler. Continuous Integration.

https://martinfowler.com/articles/
continuousIntegration.html

64

