Configuration Management

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Version 1.1.0 - May 2018

l l g © Marco Torchiano, 2018
http://softeng.polito.it

SOME RIGHTS RESERVED @ @

@creative
commons

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by
the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No [Izerivative Works. You may not alter, transform, or build upon this
work.

= For any reuse or distribution, you must make clear to others the
license terms of this work.

*= Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Learning objectives

= Understand what is configuration
management

+ What is Version Control
+ What are the main concepts of VC

= Know the main tools for version
control

= Learn how SVN can be used for CM

Configuration Management

= The discipline that applies technical and
administrative direction and surveillance
in order to:

¢+ identify and document the functional and
physical characteristics of a configuration
item,

+ control changes to those characteristics,

+ record and report change processing and
implementation status, and

+ verify compliance with specified
requirements

[IEEE Std 828-2012]
2rtEng .

Issues

= What is the history of a document?

L 4

= Who can access and change what?

2

= What is the correct set of documents for
a specific need?

*

= How the delivered system is obtained?

L 4

Goals of CM

» |dentify and manage parts of software
= Control access and changes to parts

= Allow to rebuild previous version of
software

VERSIONING

http://softeng. polito. it

Versioning

y
W
Thesis.docx

W

ThesisFinalest
Final.docx

W W

J J

ThesisFinal.docx ThesisFinal
Final.docx
| |
ThesisFinalest ThesisFinalestF**k

FinalForsure.docx FinalForsure.docx

http://softena. polito.it

Terms

= Configuration item (Cl)

» Configuration Management aggregate
= Configuration

= Version

= Baseline

Configuration Item (Cl)

= Aggregation of work products that is
treated as a single entity in the
configuration management process

= Cl (typically a file):
+ Has a name

+ All its versions are numbered and kept

+ User decides to change version number with
specific operation (commit)

+ |t is possible to retrieve any previous version

OftEng 10

Version

» The initial release or a re-release of a
configuration item
= Instance of Cl, e.g.

+ Req document 1.0
+ Req document 1.1

Version identification

= Procedures for version identification
should define an unambiguous way of
identifying component versions

= Basic techniques for component
identification

+ Version numbering
+ Attribute-based identification

Version numbering

» Simple naming scheme uses a linear
derivation
e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

» Actual derivation structure is a tree or
a network rather than a sequence

= Names are not meaningful.

= Hierarchical naming scheme may be
better

oftEng 13

Configuration

= Set of Cls, each in a specific version

config 2
ClassA 1.0 1) ClassA 1.1
ClassB 1.0 ClassB 1.1

config 1 config 3

baseline
oftEng 14

Configuration

» Snapshot of software at certain time
+ Various Cls, each in a specific version

+ Same Cl may appear in different
configurations

+ Also configuration has version

Baseline

= Configuration in stable, frozen form

+ Not all configurations are baselines

* Any further change / development will
produce new version(s) of CI(s), will not
modify baseline

» Types of baselines
* Development - for internal use
¢ Product - for delivery

Semantic Versioning

* Product numbering based on

» [ncrement:

+ MAJOR: when you make large (possibly
incompatible) API changes,

+ MINOR: when you add functionality in a
backwards-compatible manner, and

* PATCH: when you make backwards-
compatible bug fixes.

http://semver.org

CHANGE CONTROL

Repository

= A collection of all software-related
artifacts belonging to a system

= The location/format in which such a
collection is stored

Typical case

= Team develops software
= Many people need to access different
parts of software

+ Common repository (shared folder),
* Everybody can read/write documents/files

Change control - repository

/%\ copy
m repository

Repository - file server

1 copy doc.doc
7——\ '\ 2 copy doc.doc
f | / Mary

repository
\ with file —
server ')
3 copy doc.doc /

4 copy doc.doc

Changes by John are lost

2ftEng

File system limitations

Two users read the same file
Repository

Read Read

]

Harry Sally

Harry publishes his version first
Repository
e
W’n’!e—j

Harry Sally

A They both begin to edit their copies
Repository

S
a
R
- B
n

Harry Sally

Saly acadentally overwrites Harry's version

Repository
18
L Write

Harry Sally

SOrftEng

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Egato

Check-in / check-out

» Check-out

+ Extraction of Cl from repository
- with goal of changing it or not
- After checkout next users are notified

* Check-in (or commit)
¢ Insertion of Cl under control

http://softena. polito. it

24

Repository - check in checkout

1 checkout doc.doc v x
I/%‘\I \

2 checkin doc.doc v x+1

Check-in / check-out - scenarios

» | ock-modify-unlock (or serialization)
+ Only one developer can change at a time

= Copy-modify-merge
+ Many change in parallel, then merge

Lock-Modify-Unlock

Harry “locks” file A, then copies While Harry edits, Sally’s lock
it for editing attempt faifs
Repository Repository

N

-~ A

A A
Harry Sally Harry Sally
' Harry writes his versian, then Now Sally can lock, read, and
releases his lock edit the lotest version
Repository Repository
S [

Wnite

UNLOCK
Harry Sally Harry Sally

S Q,f);nﬁ[\ g © B.Collins-Sussman, B.W.Fitzpatrick C.M.Ei}ato

Lock-Modify-Unlock

= Pro
+ Conflicts are impossible
= Cons

+ No parallel work is possible, large delays
can be induced

+ Developers can possibly forget to unlock
so blocking the whole team

SortEng 28

http://softena. polito. it

Copy-Modify-Merge

 Twousers copy the some file
Repository

I_ Read Read

' They bath begin to edit their copies

Repository

Harry Sally
"~ Sally publishes her version first

Repository

L Write

Harry Sally

Harry gets an “out-of-date™ error

Repository
.
Write x'T

' Harry compares the latest version

fo his own

Repository
?
I— Read

Harry Sally

 The merged versian is published

Repository

A new merged version is created

Repository

Harry Sally

Nowr both users have each
others’changes

Repository
[
Read

Harry Sally Harry Sally _I
Wnte
Harry Sally Harry Sally
SQLEEDQ © B.Collins-Sussman, B.W.Fitzpatrick C.M.Eiéato

Copy-Modify-Merge

= Pros

+ More flexible

+ Several developers can work in parallel
+ No developer can block others

= Con

* Requires care to resolve the conflicts

http://softena. polito.it

30

Branches: general concept

* Line of development that exists
independently of another line, yet still
shares a common history when looking far
enough back in time.

= A branch always takes life as a copy of
something, and moves on from there, L
. . 3rd brand
independently generating

15t branch

its own history

Original fine of development

2nd branch

time G)

Branches: motivation

= Branches allow working in isolation
form the main branch

+ Several new features or fixes can be
developed independently and
concurrently

* When work is complete it can be merged
into the main branch

* Branches may also represent different
configurations, e.g. by platform

OftEng 32

Tools

= Change Control+Versioning+Configuration
+ RCS
*+ CVS
+ SCCS
+ PCVS
. version vl
! Bitkeaper /-\ BITKEEPER

. Scalable Version Control
+ Git

Q® glt

SOftEng 33

http://softeng. polito. it

BUILD MANAGEMENT

SortEng 34

http://softena. polito.it

Build management

» Prepare the environment

» Gather third party components
= Gather source code

= Compile

= Create packages

= Run tests

* Deploy

SOrftEng

Tools

35

» Build management

+ Make 4/‘
VAT

* Ant M

QMaVen <APACHE ANT>

*Grade Maven

MGradle

http://softena. polito. it

36

Continuous Integration

= Maintain a single source repository
= Automate the build
= Make your build self-testing

= Any commit build on integration machine
+ Keep the build fast

= Test in a clone of the production
environment

= Automate deployment

OftEng 37

Continuous integration

= Commit frequently
= Don’t commit broken code
= Don’t commit untested code

» Don’t commit when the build is
broken

= Don’t go home after committing until
the system builds

Tool CI

= Continuous Integration

* Travis C| , Travis ClI
¢ Jenkins =
¢ Cruise Control
(C cruise
SOrftEng 39

SUBVERSION

VERSION CONTROL WITH
SUBVERSION

SortEng 40

http://softena. polito.it

What is Subversion

* Free/open-source version control
system:
* it manages any collection of files and

directories over time in a central
repository;

+ it remembers every change ever made to
your files and directories;

¢ |t can access its repository across
networks

OftEng 41

Features

= Directory versioning and true version
history

= Atomic commits

= Metadata versioning

= Several topologies of network access
= Consistent data handling

= Branching and tagging

= Usable by other applications and
languages

OftEng "

commandiine

Architecture

Client Library
Working Gopy /

Management ‘
Library

Repository Access

| DAV | | SVN | |Local|

!

;
/

/ Ye Olde Internet l

4 (Any TCPIP Natwork)

Apache
mod_dav svnserve

mod_dav_svn
___ Reposliory
Intertace

Subversion Repository

e — e —
Berkeley DB FSFS
diagram by Brian W. Fitzp,

SOrftEng

The repository

= Central store of data

» |t stores information in the form of a
file system

= Any number of clients connect to the
repository, and then

* read (update) or

+ write (commit) to these files. f

()
Write f Read

ead
000
SortEng Client Client ~ flent

::::::::::::::::::::::::

Repository

The working copy (WC)

» Ordinary directory tree on your local
system, containing a copy of the
repository files ()

= Subversion will never incorporate
other people's changes (), nor
make your own changes available to
others (), until you explicitly
tell it to do so.

Revisions

= Fach time the repository accepts a commit, it
creates a new state of the file system tree,
called a revision.

= Global revision numbers: each revision is
assigned a progressive unique natural
number (previous revision + 1)

* An freshly created repository has revision O
(zero)

= The whole repo gets a new revision number

+ Revision N represents the state of the repository
after the NMth commit.

ortEng 46

Svn - version identification

= |n subversion a version is called > revision
= Each configuration has a new number

= Each element changes revision, even if has not been

changed
revision# 1 2 3 4 5
A A A A
B B B’ B’
Eng 47

Mixed revisions

= Suppose you have a working copy entirely at revision 10. You
edit the file foo.html and then perform an svn commit, which
creates revision 15 in the repository.

» Therefore the only safe thing the Subversion client can do is
mark the one file—foo.html—as being at revision 15. The rest
of the working copy remains at revision 10. This is a mixed
revision.

= Only by running svn update can the latest changes be
downloaded, and the whole working copy be marked as
revision 15.

= Memento:

+ Every time you run svn commit, your working copy ends up
with some mixture of revisions: the things you just committed
are marked as having larger working revisions than everything
else.

2ftEng 48

Basic Procedure

Create working copy from a repository
¢ svn checkout <repository>

When ready...
Synchronize contents of WC with repo
¢ svn update

Work on WC

Possibly add new files

¢ svn add <file 1ist>

Push work to repository

¢ svn commit -m “"<Log message>"

SortEng 49

http://softeng. polito. it

Commit Log Message

= Structure of the message
<type> (<scope>) : <subject>
<body>
<footer>

= Example

fix (middleware) : ensure Range headers
adhere more closely to RFC 2616

Added one new dependency, use range-
parser (Express dependency) to compute
range. It is more well-tested in the
wild.

Fixes #2310

http://karma-runner.github.io/1.0/dev/git-commit-msg.html

SortEng 50

http://softena. polito.it

Conflicts

= A conflict arise, upon commit, if the file
has been updated in the meanwhile

* N: the revision () that was modified
- the repo revision at the time of last update

+ M: the current revision () in the
repository (=N)

= A conflict occurs if:

+M>N and
+ Contents of revisions M and N differ

Conflicts

= Subversion places three extra unversioned files in
the working copy:
¢ filename.mine : the local file as it existed in the
working copy before the update
- This file has only the latest local changes in it.

¢ filename.rOLDREV : the file that was the BASE
revision before the update.

- The file checked out before any local edit.

¢ filename.rNEWREV : the file that Subversion client
just received from the server upon update.

- The HEAD revision of the repository.

= The original file contains a mix version of HEAD
(.xNEW) and BASE (.mine) with change markers

Conflict example

. and Sally both edit file sandwich. txt at
the same time. Sally commits her changes,
and when you go to update your working
copy, you get a conflict

svn update
Conflict discovered in 'sandwich. txt'.
Select: (p)postpone, (df)diff-full, (e)edit,
(h)elp for more options : p
C sandwich. txt

Updated to revision 2.

ofrtEng

Conflict example

* [n your working copy you get
1s

sandwich. txt

sandwich. txt.mine

sandwich.txt.rl

sandwich. txt.r2

= You're going to have to edit
sandwich. txt to resolve the conflicts

53

54

Conflict example

» The contents of the file sandwich. txt is

Top piece of bread

Mayonnaise

Lettuce Changes your made in
<<<<<<< .mine the conflicting area
Salami

Mortadella

Prosciutto Changes Sally previously
======= committed in the area
Sauerkraut }_

Grilled Chicken
SOOO>>> . r2

Creole Mustard
Bottom piece of bread

oftEng

Conflict example

= The updated file sandwich. txt you
create and saved is

Top piece of bread

Mayonnaise Pick and choose
Lettuce “by hand”
Mortadella

Prosciutto

Grilled Chicken
Creole Mustard
Bottom piece of bread

http://softeng. polito. it

Conflict example

* Once the conflict has been composed
you ought to signal it has been
resolved

S svn resolve --accept working sandwich. txt
Resolved conflicted state of 'sandwich. txt'

S svn commit -m ”“Pick and choosen.”

Typical work cycle
ot Y WS P [

Make changes

- svn COFV - svn add
ete - svnh move

- svh status
. svn diff
. svn revert /

pz/ svn de
Examine your changes

Merge others' changes into
your working copy
- svn update - Svn resolve

Commit your changes %/
-svn commit

Branches in Subversion

= Branches in subversion
+ exist as normal filesystem directories in the
repository
- carry some extra historical information
- Do not exist in some “extra dimension”
= Subversion has no internal concept of a
branch—only copies.
+ A directory becomes a branch because that is
how we interpret it

* Any copy brings also the previous history

oftEng 59

Branches in Subversion

You create a branche with svn copy:

LL $ svn copy /trunk \ [Z‘

/calc/branches/my-calc-branch \

—* al

-~ U
i D s D -

{> b |
gl)

D —>| paint
[D I
D Use svn swit%%ntg!?—éazive updates m—nk %

of the trunk in your branch

2ftEng 60

Subversion repo structure

= To use branches a repository contains
two top-level folders:

* : contains the main branch
. : contain the branches
- one sub-folder for each branch
° : contains snapshot of a branch

- One sub-folder per tag (version)
- Copies created keep a frozen baseline

- Note: those names are conventional

ofrtEng

Merge

= When work is done in a branch, it must be
brought back into the trunk.
= This is done by svn command.

¢ Similar to svn diff command, instead of
printing the differences to your terminal, it
applies them directly to the local working copy.
Svn diff command ignores ancestry, svnh merge
does not.

+ Two repository trees are compared, and the
differences are applied to a working copy.

= Conflicts may be produced by svn merge:
+ They are solved in the usual way

OrftEng

61

62

Wrap-up session

» Configuration management deals with

several issues:

1. Versioning

2. Configuration

3. Change control

4. Build management

= Subversion is an open-source platform

supporting 1, 2, 3

oftEng 63

References and Further Readings

IEEE STD 1042 - 1987 IEEE guide to software
configuration management

IEEE STD 828-2012: IEEE Standard for
Configuration Management in Systems and
Software Engineering

B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato.
Version Control with Subversion: For
Subversion 1.7, 2011

Semantic Versioning. http://semver.org

M.Fowler. Continuous Integration.
https://martinfowler.com/articles/
continuouslintegration.html

OftEng 64

