
OO Paradigm and UML

Version 2.2 � March 2018
© Maurizio Morisio, Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial
purposes.

§  No Derivative Works. You may not alter, transform, or build upon
this work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

3

Programming paradigms
§  Procedural (Pascal, C,…)
§  Object-Oriented (C++, Java, C#,…)
§  Functional (LISP, Haskell, SQL,…)
§  Logic (Prolog)

4

Languages timeline

�60 �70 �80 �90

1st gen
HLL

FORTRAN
COBOL

ALGOL60

2nd gen
HLL

ALGOL68
PASCAL

C

3rd gen
HLL
ADA

MODULA2

SIMULA67 SMALLTALK
C++

EIFFEL
ADA9X

Python
JAVA

Procedural
languages

Object-oriented
languages

Global
variables

Data
structures

Structured prog
Types
Blocks

Modules/ADT
Concurrency
Exceptions

�00

C#

5

Procedural
int vect[20];
void sort() { /* sort */ }
int search(int n){ /* search */ }
void init() { /* init */ }
// …
int i;
void main(){
 init();
 sort();
 search(13);
}

6

Modules and relationships

Modules:
Data

Function (Procedure)

Relationships
Call

Read/write

20

int v[20]

main()

sort() search() init()

7

Problems
§  There is no syntactic relationship between:

w Vectors (int vect[20])
w Operations on vectors (search, sort, init)

§  There is no control over size:
 for (i=0; i<=20; i++){ vect[i]=0; };

§  Initialization

w  Actually performed?

8

The vector

§  It�s not possible to consider a vector
as a primitive and modular concept

§  Data and functions cannot be
modularized properly

20

int v[20]

main()

sort() search() init() vector

9

Procedural - problems

§  No constraints on read/write
relationships

§  External functions can read/write
vector�s data

foo()

20

int v[20]

main()

sort() search() init() vector

Procedural - In the long run

§  (All) functions may read/write (all) data
§  Evolution leads to a growing number of

relationships, source code becomes
difficult to understand and maintain
w Problem known as “Spaghetti code”

foo()

20

int v[20]

main()

sort() search() init() vector
foo() foo()

11

What is OO?
§  Procedural Paradigm

w  Program defines data and then calls
subprograms acting on data

§  OO Paradigm
w  Program creates objects that encapsulate both

the data and the procedures operating on data

§  OO is simply a new way of organizing a
program
w  Cannot do anything using OO that can’t be done

using procedural paradigm

12

Why OO?
§  Programs are getting too large to be fully

comprehensible by any person
§  There is a need for a way of managing

very-large projects
§  Object Oriented paradigm allows:

w  programmers to (re)use large blocks of code
w without knowing all the picture

§  OO makes code reuse a real possibility
§  OO simplifies maintenance and evolution

13

Why OO?
§  Benefits only occur in larger programs
§  Analogous to structured programming

w Programs < 30 lines, spaghetti is as
understandable and faster to write than
structured

w Programs > 1000 lines, spaghetti is
incomprehensible, probably doesn’t
work, not maintainable

§  Only programs > 1000 lines benefit
from OO really

14

An engineering approach

§  Given a system, with components and
relationships among them, we have to:
w  Identify the components
w Define component interfaces
w Define how components interact with each

other through their interfaces
w Minimize relationships among components

15

Object-Oriented Design

§  Objects introduce an additional
aggregation construct

§  More complex system can be built

16

Procedural vs. OO

Main
Program

Data

Subprogram
#1 Subprogram

#2

Subprogram
#3 Subprogram

#4

Subprogram
#5

Procedural

Main
Program

Object #3

Data

Object #2

Data

Object #1

Data Object Oriented

17

Object-Oriented approach

§  Defines a new component type
w Object (and class)
w Both data and functions accessing it are

within the same module
w Allows defining a more precise interface

§  Defines a new kind of relationship
w Message passing
w Read/write operations are limited to the

same object scope

Classification of OO languages
§  Object-Based (Ada)

w Specific constructs to manage objects
§  Class-Based (CLU)

w + each object belongs to a class
§  Object-Oriented (Simula, Python)

w + classes support inheritance
§  Strongly-Typed O-O (C++, Java)

w + the language is strongly typed

UML
§  Unified Modeling Language
§  Standardized modeling and  

specification language
§  Defined by the Object Management Group (OMG)

§  Graphical notation to specify, visualize,
construct and document an object-oriented
system

§  Integrates the concepts of Booch, OMT and
OOSE, and merges them into a single,
common and widely used modeling
language

UML
§  Several diagrams

w Class diagrams
w Activity diagrams
w Use Case diagrams
w Sequence diagrams
w Statecharts

UML Class Diagram
§ Captures

w Main (abstract) concepts
w Characteristics of the concepts

– Data associated to the concepts
w Relationships between concepts
w Behavior of classes

Abstraction levels

Abstract

Concept
Entity
Class
Category
Type

Concrete

Instance
Item
Object
Example
Occurrence

Class
§  Represents a set of objects

w Common properties
w Autonomous existence.
w E.g. facts, things, people

§  An instance of a class is an object of
the type that the class represents.
w  In an application for a commercial

organization CITY, DEPARTMENT,
EMPLOYEE, PURCHASE and SALE are
typical classes.

Class - Examples Class Diagram0 2013/10/03 powered by Astah

 pkg

Employee

Department

City

Sale

Object
§  Model of a physical or logical item

w ex.: a student, an exam, a window
§  Characterized by

w  identity
w attributes (or data or properties or status)
w operations it can perform (behavior)
w messages it can receive

Object

Communication Diagram1 2014/03/05 powered by Astah

Communication Diagram1sd

John : Employee

DAUIN : Department

Class and Object
§  Class (the description of object

structure, i.e. type):
w Data (ATTRIBUTES or FIELDS)
w Functions (METHODS or OPERATIONS)
w Creation methods (CONSTRUCTORS)

§  Object (class instance)
w State and identity

27

Class and object
§  A class is a type definition

w  Typically no memory is allocated until an object
is created from the class

§  The creation of an object is called
instantiation. The created object is often
called an instance

§  There is no limit to the number of objects
that can be created from a class

§  Each object is independent. Interacting with
one object doesn't affect the others

Classes and objects

Class Diagram0 2013/10/03 powered by Astah

 pkg

Employee

Department

City

Sale

Communication Diagram1 2014/03/05 powered by Astah

Communication Diagram1sd

John : Employee

DAUIN : Department

Attribute
§  Elementary property of classes

w Name
w Type

§  An attribute associates to each object
(occurrence of a class) a value of the
corresponding type
w Name: String
w  ID: Numeric
w Salary: Currency

Attribute – Example

31

4a-Attributes 2017/03/09 powered by Astah

 pkg

- Year : int
- Code : String

Course

- Inhabitants : int
- Name : String

City- Salary : Currency

Employee

Method
§  Describes an operation that can be

performed on an object
w Name
w Parameters

§  Similar to functions in procedural
languages

§  It represent the means to operate on
or access to the attributes

Method - Example Class Diagram0 2014/03/06 powered by Astah

 pkg

+ getSalary() : double
+ printName() : void

- salary : double
- name : String
- ID : int

Employee

Message passing
§  Objects communicate by message

passing
w Not by direct access to object’s local data

§  A message is a service request

Note: this is an abstract view that is
independent from specific
programming languages.

Messages Communication Diagram0 2014/03/05 powered by Astah

Communication Diagram0sd

DAUIN : Department

Jane : Employee

John : Employee

1: printName()()

2: printName()

Interface
§  Set of messages an object can receive

w Each message is mapped to an internal
“function” within the object

w The object is responsible for the
association (message à function)

w Any other message is illegal
§  The interface

w Encapsulates the internals
w Exposes a standard boundary

Interface
§  The interface of an object is simply the

subset of methods that other
�program parts� are allowed to call
w Stable

37

Interface

 Rest of
the

Program

method

method

method

method

method

method

method

Fields of
The Object

Other
parts

Object

Encapsulation
§  Simplified access

w To use an object, the user need only
comprehend the interface. No knowledge
of the internals are necessary

§  Self-contained.
w Once the interface is defined, the

programmer can implement the interface
(write the object) without interference of
others

38

Encapsulation
§  Ease of evolution

w  Implementation can change at a later time
without rewriting any other part of the
program (as long as the interface doesn't
change)

§  Single point of change
w Any change in the data structure means

modifying the code in one location, rather
than code scattered around the program
(error prone)

39

Association
§  Represents a logical link between two

classes.
§  An occurrence of an association is a

pair made up of the occurrences of the
entities, one for each involved class
w Residence is an association between the

classes City and Employee;
w Exam is an association between the

classes Student and Course.

Associations
Class

 Student
Class

 Course

Link
between objects

Association
between classes

Association - Examples
2-Associations 2013/10/03 powered by Astah

Student Course
Attend

Employee City

Works_in

Residence

Recursive association-Samples
3.a-Recursive associations 2013/10/04 powered by Astah

 pkg

Employee

Friend

- employee

- manager

Supervise

Student

Link
§  Model of association between objects

Attribute – Example

Is everything ok?

Multiplicity - Example

0..4

Min Max

A car can mount none,
up to four wheels

Multiplicity - Example

0..1

A wheel can be
mounted on none or

at most one car

Multiplicity
§  Typically, only three values are used:

0, 1 and the symbol * (many)
§  Minimum: 0 or 1

w 0 means the participation is optional,
w 1 means the participation is mandatory;

§  Maximum: 1 or *
w 1: each object is involved in at most one

link
w *: each object is involved in many links

Multiplicity

n
Exactly n

*
Zero or more

0..1 Zero or one (optional)

m..n
Between m and n (m,n included)

m..* From m up

Multiplicity
3-Multiplicity 2013/10/04 powered by Astah

Order Invoice

0..11
Sale

Person City

10..*
Residence

Tourist Trip

0..*1..*
Reservation

Aggregation
§  B is-part-of A means that objects

described by class B can be attributes
of objects described by A

A B

Example
Car

Engine

power

CD player

Tyre

1 4

1

Association Class
§  The association class define the

attributes related to the association
§  A link between two object includes

w The two linked objects
w The attributes defined by the association

class

Association class - Equivalence

Association Class Limitations
§  Association class

w Fee is a function of consultant and
company

w fee (Consultant , Company)

§  Intermediate class
w Fee is a function of the contract
w fee (Contract)

Association class limitation
§  Case

w Consultant working several time for the
same Company

§  Cannot be represented by association
class

§  Only representable through
intermediate class

57

Inheritance
§  A class can be a sub-type of another class
§  The inheriting class contains all the

methods and fields of the class it inherited
from plus any methods and fields it defines

§  The inheriting class can override the
definition of existing methods by providing
its own implementation

§  The code of the inheriting class consists
only of the changes and additions to the
base class

Specialization / Generalization
§  B specializes A means that objects

described by B have the same
properties of objects described by A

§  Objects described by B may have
additional properties

§  B is a special case of A
§  A is a generalization of B (and possible

other classes)

Generalization

60

Inheritance terminology

§  Class one above
w Parent class

§  Class one below
w Child class

§  Class one or more above
w Superclass, Ancestor class, Base class

§  Class one or more below
w Subclass, Descendent class, Derived class

Set-Specialization
Inheritance 2015/07/22 powered by Astah

- SSN : String
- Last : String
- First : String

Person

- ID : int
Student

- Salary : Currency
Employee

Person
Employee

Student

62

Why inheritance
§  Frequently, a class is merely a modification

of another class. In this way, there is
minimal repetition of the same code

§  Localization of code
w  Fixing a bug in the base class automatically

fixes it in the subclasses
w  Adding functionality in the base class

automatically adds it in the subclasses
w  Less chances of different (and inconsistent)

implementations of the same operation

63

Example of inheritance tree

Animal

salesman

Living species

vegetal

Flower

Human being

Flower seller

Customer

High DIT make
code hard to
understand

DIT

Conceptual model quality
§  Correctness

w No requirement is misrepresented
§  Completeness

w All requirements are represented
§  Readability

w  It is easy to read and understand
§  Minimality

w There are no avoidable elements

References
§  Fowler, M. “UML Distilled: A Brief

Guide to the Standard Object Modeling
Language - 3rded.”, Addison-Wesley
Professional (2003)

