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Programming paradigms 
§  Procedural (Pascal, C,…) 
§  Object-Oriented (C++, Java, C#,…) 
§  Functional (LISP, Haskell, SQL,…) 
§  Logic (Prolog) 
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Procedural 
int vect[20]; 
void sort() { /* sort */ } 
int search(int n){ /* search */ } 
void init() { /* init */ } 
// … 
int i; 
void main(){ 
   init(); 
   sort(); 
   search(13); 
} 
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Modules and relationships 

Modules:  
Data 

Function (Procedure) 

Relationships 
Call 

Read/write 

20 

int v[20] 

main() 

sort() search() init() 
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Problems 
§  There is no syntactic relationship between: 

w Vectors ( int vect[20] ) 
w Operations on vectors (search, sort, init) 

 
§  There is no control over size: 
     for (i=0; i<=20; i++){ vect[i ]=0; }; 
 
§  Initialization 

w  Actually performed? 
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The vector 

§  It�s not possible to consider a vector 
as a primitive and modular concept 

§  Data and functions cannot be 
modularized properly 

20 

int v[20] 

main() 

sort() search() init() vector 
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Procedural - problems 

§  No constraints on read/write 
relationships 

§  External functions can read/write 
vector�s data 

foo() 

20 

int v[20] 

main() 

sort() search() init() vector 

Procedural - In the long run 

§  (All) functions may read/write (all) data 
§  Evolution leads to a growing number of 

relationships, source code becomes 
difficult to understand and maintain 
w Problem known as “Spaghetti code” 

foo() 

20 

int v[20] 

main() 

sort() search() init() vector 
foo() foo() 
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What is OO? 
§  Procedural Paradigm 

w  Program defines data and then calls 
subprograms acting on data 

§  OO Paradigm 
w  Program creates objects that encapsulate both 

the data and the procedures operating on data 
 

§  OO is simply a new way of organizing a 
program 
w  Cannot do anything using OO that can’t be done 

using procedural paradigm 
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Why OO? 
§  Programs are getting too large to be fully 

comprehensible by any person 
§  There is a need for a way of managing 

very-large projects 
§  Object Oriented paradigm allows: 

w  programmers to (re)use large blocks of code 
w without knowing all the picture 

§  OO makes code reuse a real possibility  
§  OO simplifies maintenance and evolution 
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Why OO? 
§  Benefits only occur in larger programs 
§  Analogous to structured programming 

w Programs < 30 lines, spaghetti is as 
understandable and faster to write than 
structured 

w Programs > 1000 lines, spaghetti is 
incomprehensible, probably doesn’t 
work, not maintainable 

§  Only programs > 1000 lines benefit 
from OO really  
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An engineering approach 

§  Given a system, with components and 
relationships among them, we have to: 
w  Identify the components 
w Define component interfaces 
w Define how components interact with each 

other through their interfaces 
w Minimize relationships among components 
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Object-Oriented Design 

§  Objects introduce an additional 
aggregation construct 

§  More complex system can be built 
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Procedural vs. OO 

Main  
Program 

Data 

Subprogram  
#1 Subprogram  

#2 

Subprogram  
#3 Subprogram  

#4 

Subprogram  
#5 

Procedural 

  

Main    
Program 
  

Object #3   

Data   

Object #2   

Data   

Object #1   

Data   Object Oriented   



17 

Object-Oriented approach 

§  Defines a new component type 
w Object (and class) 
w Both data and functions accessing it are 

within the same module 
w Allows defining a more precise interface 

§  Defines a new kind of relationship 
w Message passing 
w Read/write operations are limited to the 

same object scope 

Classification of OO languages 
§  Object-Based (Ada) 

w Specific constructs to manage  objects  
§  Class-Based (CLU) 

w + each object belongs to a class 
§  Object-Oriented (Simula, Python) 

w + classes support inheritance 
§  Strongly-Typed O-O (C++, Java) 

w + the language is strongly typed  



UML 
§  Unified Modeling Language 
§  Standardized modeling and  

specification language  
§  Defined by the Object Management Group (OMG) 

§  Graphical notation to specify, visualize, 
construct and document an object-oriented 
system 

§  Integrates the concepts of Booch, OMT and 
OOSE, and merges them into a single, 
common and widely used modeling 
language 

UML 
§  Several diagrams 

w Class diagrams 
w Activity diagrams 
w Use Case diagrams 
w Sequence diagrams  
w Statecharts 



UML Class Diagram 
§ Captures 

w Main (abstract) concepts 
w Characteristics of the concepts 

– Data associated to the concepts 
w Relationships between concepts 
w Behavior of classes 

Abstraction levels 

Abstract 

Concept 
Entity 
Class  
Category 
Type 

Concrete 

Instance 
Item 
Object 
Example 
Occurrence 



Class 
§  Represents a set of objects  

w Common properties 
w Autonomous existence.  
w E.g. facts, things, people 

§  An instance of a class is an object of 
the type that the class represents.  
w  In an application for a commercial 

organization CITY, DEPARTMENT, 
EMPLOYEE, PURCHASE and SALE are 
typical classes.  

Class - Examples Class Diagram0 2013/10/03 powered by Astah 

 pkg 

Employee

Department

City

Sale



Object 
§  Model of a physical or logical item 

w ex.: a student, an exam, a window 
§  Characterized by 

w  identity 
w attributes (or data or properties or status) 
w operations it can perform (behavior) 
w messages it can receive 

Object 

Communication Diagram1 2014/03/05 powered by Astah 

Communication Diagram1sd 

John : Employee

DAUIN : Department



Class and Object 
§  Class (the description of object 

structure, i.e. type): 
w Data  (ATTRIBUTES or FIELDS) 
w Functions  (METHODS or OPERATIONS) 
w Creation methods  (CONSTRUCTORS) 

§  Object (class instance) 
w State and identity 
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Class and object 
§  A class is a type definition 

w  Typically no memory is allocated until an object 
is created from the class  

§  The creation of an object is called 
instantiation. The created object is often 
called an instance 

§  There is no limit to the number of objects 
that can be created from a class 

§  Each object is independent. Interacting with 
one object doesn't affect the others  



Classes and objects 

Class Diagram0 2013/10/03 powered by Astah 

 pkg 

Employee

Department

City

Sale

Communication Diagram1 2014/03/05 powered by Astah 

Communication Diagram1sd 

John : Employee

DAUIN : Department

Attribute 
§  Elementary property of classes 

w Name 
w Type 

§  An attribute associates to each object 
(occurrence of a class) a value of the 
corresponding type 
w Name: String 
w  ID: Numeric 
w Salary: Currency 



Attribute – Example 
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4a-Attributes 2017/03/09 powered by Astah 

 pkg 

- Year : int
- Code : String

Course

- Inhabitants : int
- Name : String

City- Salary : Currency

Employee

Method 
§  Describes an operation that can be 

performed on an object 
w Name 
w Parameters 

§  Similar to functions in procedural 
languages 

§  It represent the means to operate on 
or access to the attributes 



Method - Example Class Diagram0 2014/03/06 powered by Astah 

 pkg 

+ getSalary() : double
+ printName() : void

- salary : double
- name : String
- ID : int

Employee

Message passing 
§  Objects communicate by message 

passing 
w Not by direct access to object’s local data 

§  A message is a service request 

Note: this is an abstract view that is 
independent from specific 
programming languages. 



Messages Communication Diagram0 2014/03/05 powered by Astah 

Communication Diagram0sd 

DAUIN : Department

Jane : Employee

John : Employee

1: printName()()

2: printName()

Interface 
§  Set of messages an object can receive 

w Each message is mapped to an internal 
“function” within the object 

w The object is responsible for the 
association (message à function) 

w Any other message is illegal 
§  The interface 

w Encapsulates the internals  
w Exposes a standard boundary 



Interface 
§  The interface of an object is simply the 

subset of methods that other 
�program parts� are allowed to call 
w Stable 
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Interface 

   Rest of 
the  

Program  

method 

method 

method 

method 

method 

method 

method 

Fields of 
The Object 

Other 
parts 

Object 

Encapsulation 
§  Simplified access 

w To use an object, the user need only 
comprehend the interface. No knowledge 
of the internals are necessary 

§  Self-contained.  
w Once the interface is defined, the 

programmer can implement the interface 
(write the object) without interference of 
others 
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Encapsulation 
§  Ease of evolution 

w  Implementation can change at a later time 
without rewriting any other part of the 
program (as long as the interface doesn't 
change) 

§  Single point of change 
w Any change in the data structure means 

modifying the code in one location, rather 
than code scattered around the program 
(error prone) 
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Association 
§  Represents a logical link between two 

classes.  
§  An occurrence of an association is a 

pair made up of the occurrences of the 
entities, one for each involved class  
w Residence is an association between the 

classes City and Employee;  
w Exam is an association between the 

classes Student and Course.  



Associations 
Class 

 Student 
Class 

 Course 

Link 
between objects 

Association  
between classes 

Association - Examples 
2-Associations 2013/10/03 powered by Astah 

Student Course
Attend

Employee City

Works_in

Residence



Recursive association-Samples 
3.a-Recursive associations 2013/10/04 powered by Astah 

 pkg 

Employee

Friend

- employee

- manager

Supervise

Student

Link 
§  Model of association between objects 



Attribute – Example 

Is everything ok? 

Multiplicity - Example 

0..4 

Min Max 

A car can mount none, 
up to four wheels 



Multiplicity - Example 

0..1 

A wheel can be 
mounted on none or 

at most one car 

Multiplicity 
§  Typically, only three values are used: 

0, 1 and the symbol * (many)  
§  Minimum: 0 or 1 

w 0 means the participation is optional,  
w 1 means the participation is mandatory;  

§  Maximum: 1 or * 
w 1: each object is involved in at most one 

link 
w *: each object is involved in many links  



Multiplicity 

n 
Exactly n 

* 
Zero or more 

0..1 Zero or one (optional) 

m..n 
Between m and n (m,n included) 

m..* From m up  

Multiplicity 
3-Multiplicity 2013/10/04 powered by Astah 

Order Invoice

0..11
Sale

Person City

10..*
Residence

Tourist Trip

0..*1..*
Reservation



Aggregation 
§  B is-part-of A means that objects 

described by class B can be attributes 
of objects described by A  

A B 

Example 
Car 

 
 
 

 
 
 

Engine 

 
 
 

 
 

power 
 

CD player 

Tyre 

 
 
 

 
 

1 4 

1 



Association Class 
§  The association class define the 

attributes related to the association 
§  A link between two object includes 

w The two linked objects 
w The attributes defined by the association 

class 

Association class - Equivalence 



Association Class Limitations 
§  Association class 

w Fee is a function of consultant and 
company 

w fee ( Consultant , Company ) 

§  Intermediate class 
w Fee is a function of the contract 
w fee ( Contract )  

Association class limitation 
§  Case 

w Consultant working several time for the 
same Company 

§  Cannot be represented by association 
class 

§  Only representable through 
intermediate class 
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Inheritance 
§  A class can be a sub-type of another class 
§  The inheriting class contains all the 

methods and fields of the class it inherited 
from plus any methods and fields it defines  

§  The inheriting class can override the 
definition of existing methods by providing 
its own implementation  

§  The code of the inheriting class consists 
only of the changes and additions to the 
base class  

Specialization / Generalization 
§  B specializes A means that objects 

described by B have the same 
properties of objects described by A  

§  Objects described by B may have 
additional properties 

§  B is a special case of A 
§  A is a generalization of B (and possible 

other classes) 



Generalization 
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Inheritance terminology 

§  Class one above 
w Parent class 

§  Class one below 
w Child class 

§  Class one or more above 
w Superclass, Ancestor class, Base class 

§  Class one or more below 
w Subclass, Descendent class, Derived class 



Set-Specialization  
Inheritance 2015/07/22 powered by Astah 

- SSN : String
- Last : String
- First : String

Person

- ID : int
Student

- Salary : Currency
Employee

Person 
Employee 

Student 
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Why inheritance 
§  Frequently, a class is merely a modification 

of another class. In this way, there is 
minimal repetition of the same code 

§  Localization of code  
w  Fixing a bug in the base class automatically 

fixes it in the subclasses  
w  Adding functionality in the base class 

automatically adds it in the subclasses 
w  Less chances of different (and inconsistent) 

implementations of the same operation 
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Example of inheritance tree 

Animal 

salesman 

Living species 

vegetal 

Flower 

Human being 

Flower seller 

Customer 

High DIT make 
code hard to 
understand 

DIT 

Conceptual model quality 
§  Correctness 

w No requirement is misrepresented 
§  Completeness 

w All requirements are represented 
§  Readability 

w  It is easy to read and understand 
§  Minimality 

w There are no avoidable elements 
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