
Software Engineering

Version 0.4.0 - March 2018

© Maurizio Morisio, Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Software Engineering
§  The origin of the discipline

w Garmish 1968
w NATO organized conference

– Motivation was that the computer industry at
large was having a great deal of trouble in
producing large and complex software
systems

3

Software Engineering

Multi person construction of
multi version software

w Parnas

SE
A discipline that deals with the

building of software systems
which are so large that they

are built by a team or teams of
engineers

w Ghezzi, Jazayeri, Mandrioli

Software vs. Program

Software ≠ Program

§  Software..
w includes rules, documentation, data…
w is long-lived
w has many stakeholders
w depends on several humans developers
w is ~10 times more expensive

Software Discipline Premises
§  Evolutionary and experimental

w Software does not ages, its context does
§  Development as opposed to

production
w Replication is almost free

§  Makes use of technologies that are
ultimately human based
w Human issues are as important as

technical ones

7

The mythical man-month
§  Fred Brooks, 1975

Adding manpower to  
a late software project 
makes it later.

8

Software is Software is Software?

§ No!
§ All software is not the same

w Process is a variable
w Goals are variable
w Content varies
w …

9

SOFTWARE LIFE CYCLE

Goal
Produce software

w documents, data, code
with defined, predictable process

properties
w cost, duration

and product properties
w functionality, reliability, performance, ..

The production activities
§  Requirement engineering

w What the software should do
§  Architecture and design

w What units and how organized
§  Implementation

w Write source code
w Integrate units

Implement
unit

Production activities

Integrate
units

Architecture
and Design

Requirements
engineering Requirement

document

Design
document

Unit

Unit

System

Implement
unit

The V & V activities
§  V & V = verification and validation
§  Control that the requirements are correct

w  Externally: did we understand what the customer/user
wants?

w  Internally: is the document consistent?
§  Control that the design is correct

w  Externally: is the design capable of supporting the
requirements

w  Internally: is the design consistent?
§  Control that the code is correct

w  Externally: is the code capable of supporting the
requirements and the design?

w  Internally: is the code consistent (syntactic checks)

Implement
unit

Production activities

Integrate
units

Architecture
and Design

Requirements
engineering Requirement

document

Design
document

Unit

Unit

System

Implement
unit

V&V Reqs

Checked Reqs

V&V Design

Checked Design

V&V Units

Checked Units

V&V System Checked
System

The management activities
§  Project management

w  Assign work and monitor progress
w  Estimate and control budget

§  Configuration management
w  Identify, store documents and units
w  Keep track of relationships and history

§  Quality assurance
w Define quality goals
w Define how work will be done
w  Control results

Project management, Configuration management,  
Quality assurance

Implement
unit

Production activities

Integrate
units

Architecture
and Design

Requirements
engineering Requirement

document

Design
document

Unit

Unit

System

Implement
unit

V&V Reqs

Checked Reqs

V&V Design

Checked Design

V&V Units

Checked Units

V&V System Checked
System

PHASES

Beyond development
§  Development is only the first part of

the game
w Operate the software

– Deployment
– Operation

w Modify the software
– Maintenance

w Terminate the usage
– Retirement

The main phases

months years

Development

Operation

Maintenance

time

deployment retirement
release

developers

developers

users

Maintenance
§  Can be seen as a sequence of

developments
§  First development usually longer
§  Next developments constrained by

previous ones and related choices
w If dev_0 chooses java, next developments

are in Java
w If dev_0 chooses client server model, next

developments keep C/S

Maintenance

months
years

Development_0

Operation

Maintenance

time

deployment retirement
release0

developers

developers

users

Dev_1 Dev_2 Dev_3

rel_1 rel_2 rel_3

Maintenance
§  Development and maintenance do the

same activities (requirement, design,
etc)
w But in maintenance an activity is

constrained by what has been done
before

w After years, the constraints are so many
that changes become impossible

Maintenance

Development_0

Operation

Maintenance

time

users

Dev_1 Dev_2 Dev_3

R0 D0 I0

R1 D1 I1 R3 D3 I3

§  Development_0
w Req_0 developed from scratch
w Design_0 developed from req_0
w Impl_0 developed from design_0

§  Development_1
w Req_1 from Req_0 (and Des_0, Impl_0)
w Des_1 from Req_1
w Impl_1 from Des_1

ISO/IEC 12207
Primary processes Supporting processes

Organisational processes

Acquisition

Supply

Development

Maintenance

Operating

Documentation

Configuration
management

Quality
management

Management Improvement Infrastructure Training

Primary processes
§  Acquisition (manage suppliers)
§  Supply (interaction with customer)
§  Development (develop sw)
§  Operation (deploy, operate service)
§  Maintenance

Supporting
§  Documentation of product
§  Configuration management
§  Quality assurance

w Verification and Validation
w Reviews with customer
w Internal audits
w Problem analysis and resolution

Organizational
§  Project management
§  Infrastructure management

w Facilities, networks, tools
§  Process monitoring and improvement
§  Training

Ex. Software development
§ Activity 5.3 Software development is decomposed in
tasks
w 5.3.1 Process Instantiation
w 5.3.2 System requirements analysis
w 5.3.3 System architecture definition
w 5.3.4 Software requirements analysis
w 5.3.5 Software architecture definition
w 5.3.6 Software detailed design
w 5.3.7 Coding and unit testing
w 5.3.8 Integration of software units
w 5.3.9 Software validation
w 5.3.10 System integration
w 5.3.11 System validation

V&V Tasks
§  Coding and verification of components

(5.3.7.)
§  Integration of components (5.3.8.)
§  Validation of software (5.3.9.)
§  System Integration (5.3.10.)
§  System validation (5.3.11.)

Subtasks
§  Coding and verification of components

(5.3.7.)
– Definition of test data and test procedures

(5.3.7.1.)
–  Execute and document tests (5.3.7.2.)
– Update documents, plan integration tests

(5.3.7.4.)
–  Evaluate tests (5.3.7.5.)

§  Integration of components (5.3.8.)
– Definition of integration test plan (5.3.8.1.)
–  Execute and document tests (5.3.8.2.)
– Update documents, plan validation tests(5.3.8.4.)
–  Evaluate tests (5.3.8.5.)

ISO 12207
§  Only list of activities
§  Indipendent of lifecycle

w Waterfall, iterative, ..
§  Indipendent of technology
§  Indipendent of application domain
§  Indipendent of documentation

How to organize everything?
§  Processes

w Set of related activities
w To transform input in output
w Using resources (staff, tools, hw)
w Within given constraints (norms,

standards)

Scenarios in development
§  Scenario 1: IT to support businesses

w Development: several months
w Operation: years
w Maintenance: years, up to 60% of overall

costs
§  Scenario 2: consumer software (games)

w Development: months
w Operation: months (weeks)
w Virtually no maintenance

Scenarios in development
§  Scenario 3: Operating System

w Development: years
w Operation: years
w Maintenance: years, up to 60% of overall costs

§  Scenario 31: Commercial OS (MS)
w  2, 3 years to develop
w  Several years maintenance

–  Patches issued every day
–  Major releases (Service Pack) at long intervals

w  In parallel development of a new release
–  Cfr W3.1, 95, NT, 2000, XP, Vista, 7, …

PROCESS MODELS

Three main approaches
§  Cow boy programming / Build and Fix

w  Just code, all the rest is time lost and real
programmers don’t do it

§  Document based, semiformal, UML
w  Semiformal language for documents (UML), hand

(human) based transformations and controls
§  Formal/model based

w  Formal languages for documents, automatic
transformations and controls

§  Agile
w  Limited use of documents

Models
§  Document based

w  Waterfall
w  V
w  Incremental, Evolutionary, Iterative
w  Prototyping
w  Spiral
w  Open source
w  Unified Process – UP - RUP
w  Synch and stabilize

§  Agile
w  Scrum, Extreme Programming, Crystal

§  Formal methods
w  Formal methods
w  Formal UML

Build and fix

A non-model
§ May be ok for solo programming
§ Does not scale up for larger projects

§ No requirements
§ No design
§ No validation of requirements/design

Programming !

Build and fix (code and go)

Waterfall
§  Sequential activities

– Activity produces document/deliverable
– Next activity starts when previous is over and

freezes the deliverable
– Change of documents/deliverables is an

exceptional case

§  Document driven
[Royce1970]

Waterfall

Problems
§  Lack of flexibility

w Rigid sequentiality
w Requirements supposed to be frozen for

long period
– No changes to improve them

–  Rarely cristal clear
– No changes to follow changes in context/

customer needs

§  Burocratic

V Model
§  Similar to waterfall
§  Emphasis on V&V activities
§  Acceptance tests written after/with

requirements
§  Unit/integration tests written after/

during design

V Model

requirements

design

implementation unit test

integration test

acceptance test
acceptance tests document

requirements document

design document

integration tests

unit tests units

integrated units

system
Informal requirements

Prototyping + waterfall

§  Quick  
and dirty
prototype to
validate/analyze
requirements

§  Then same as
waterfall

Prototyping
§  Advantages

w Clarify requirements
§  Problems

w Requires specific skills to build prototype
(prototyping language)

w Business pressures to keep prototype
(when successful) as final deliverable

Prototype in software
§  Subset of functions
§  Other language / technology

w Matlab instead of C
w Lisp instead of C

Incremental
§  Implementation is split in

increments (builds)
w  Delay implementation of

units that depend on
external factors
(technologies, hardware,
etc)

w  Early feedback from user
§  Iterations/builds are

planned
§  Can be associated to

prototyping

Evolutionary
§  Similar to incremental
§  But requirements can change at each

iteration
w Can be associated to prototyping

Evolutionary
§  Advantages

w Early feedback, changes to requirements
§  Problems

w Process can become uncontrolled
w Design may require changes
w Contractual issues

– Agreement on effort, not on functions

Iterative
§  Many iterations,
§  In each iteration a small project

(waterfall like)

Processes -comparison
R D C UT IT ST waterfall

incremental R D C UT IT ST C UT IT ST
build1 build2

release release

release

evolutionary R D C UT IT ST C UT IT ST
build1 build2

release release

R D

C UT IT ST
build1

release

R D C UT IT ST
build2

release

R D
iterative

Legend:R= Requirements, D= Design, C=Coding, UT=Unit Test,
IT= Integration Test, ST = System Test

(R)UP

(Rational) Unified Process
§  Proposed in 1999 by

w Grady Booch
w Ivar Jacobson
w James Rumbaugh

§  Characteristics
w Based on architecture
w Iterative incremental

UP Phases
§  Inception

w  Feasibility study; risk analysis; essential
requirements; prototyping (not mandatory)

§  Elaboration
w  Requirement analysis; risk analysis; architecture

definition; project plan
§  Construction

w  analysis, design, implementation, testing
§  Transition

w  Beta testing, performance tuning;
documentation; training, user manuals;
packaging for shipment

Agile manifesto - Values
§  Individuals and interactions

w over processes and tools
§  Working software

w over comprehensive documentation
§  Customer collaboration

w over contract negotiation
§  Responding to change

w over following a plan

Agile Manifesto - Principles
1.  Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.
2.  Welcome changing requirements, even late in development.

Agile processes harness change for the customer's
competitive advantage.

3.  Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

4.  Business people and developers must work together daily
throughout the project.

5.  Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.

6.  The most efficient and effective method of conveying
information to and within a development team is face-to-
face conversation.

Agile Manifesto - Principles
7.  Working software is the primary measure of progress.
8.  Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain
a constant pace indefinitely.

9.  Continuous attention to technical excellence and good
design enhances agility.

10.  Simplicity - the art of maximizing the amount of work not
done- is essential.

11.  The best architectures, requirements, and designs emerge
from self-organizing teams.

12.  At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

Agile methods
§  XP
§  Cristal
§  Scrum

Agile Development Principles
§  Test as you go
§  Deliver product early and often

w Feedback
§  Document as you go, only as required
§  Build cross-functional teams

Assessment/improvement models

§  Staged CMMI
§  Spice

§  Provide a framework to
w Assess capability
w Define improvement path in company

Maturity levels for organisation

Optimizing

Managed

Defined

Repeatable

Initial

5 Focus on continuous
process improvements

4 Process measured
and controlled

3 Process
characterized for
the organization
and is proactive

2 Process characterized
for projects and is often

reactive
1 Process unpredictable, poorly

controlled and reactive

Levels
1.  Initial. The software process is characterized as ad hoc, and

occasionally even chaotic. Few processes are defined, and success
depends on individual effort.

2.  Repeatable. Basic project management processes are established to
track cost, schedule, and functionality. The necessary process
discipline is in place to repeat earlier successes on projects with
similar applications.

3.  Defined. The software process for both management and
engineering activities is documented, standardized, and integrated
into a standard software process for the organization. All projects
use an approved, tailored version of the organization's standard
software process for developing and maintaining software.

4.  Managed. Detailed measures of the software process and product
quality are collected. Both the software process and products are
quantitatively understood and controlled.

5.  Optimizing. Continuous process improvement is enabled by
quantitative feedback from the process and from piloting
innovative ideas and technologies.

Summing up

