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Regular Expression 
§  Represent a simple and efficient way 

to describe a sequence of characters 
§  They can be used to: 

♦ generate a conforming sequence of chars 
♦ recognize a sequence of chars as 

conforming with the RE 
§  The ability to recognize a valid 

sequence is fundamental in text 
processing. 
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Regular Expressions 

§  Represent a simple and efficient way to 
describe sets of character strings 

§  Operators allow representing: 
♦ characters      c 
♦ sets of characters      [abc] o  [a-c] 
♦ optionality       exp ? 
♦  repetition (0 o more)   exp * 
♦  repetition (1 o more)   exp + 
♦ alternatives       exp1 | exp2 
♦ concatenation      exp1exp2 
♦ grouping      ( exp ) 



Examples of RE 
§  Positive integer number 

♦ [0-9]+ 
§  Positive integer number w/o leading 0 

♦ [1-9][0-9]* 
§  Integer number positive or negative 

♦ [+-]?[0-9]+ 
§  Floating point number 

♦ [+-]?(([0-9]+\.[0-9]*)| 
     ([0-9]*\.[0-9]+)) 

Regular expressions 
§  RE can be used to check whether an 

input string correspond to a given set 
§  RE describes a sequence of characters 

and use a set of operators: 
♦ " \ [ ] ^ - ? . * + | ( ) $ / { } 
% < >  

§  Letters and numbers in the input text 
are described by themselves 
♦ val1 represents the sequence ‘v’ ‘a’ 
‘l’ ‘1’ in the input text 



Character set 
§  Character sets are described using []: 

♦  [0123456789] represents any integer number 
§  In a set, the symbol – indicates a range of 

characters: 
♦  [0-9] represents any numeric character 

§  To include - in the set, it must be first or last 
char: 
♦  [-+0-9] represents a number in the input text. 

§  When a set begins with ^, the characters are 
excluded: 
♦  [^0-9] represents any non numeric character 

§  The set of all characters except new line can be 
described by a dot: . 

Special characters 
§  The new-line is represented by \n 
§  Any white space is described by \s 
§  Any digit is described by \d,  

♦ i.e. [0-9] 
§  Any word char is described by \w,  

♦ i.e. [A-Za-z0-9_] 
§  The beginning of text is ^ 
§  The end of text is $ 



Optional and alternative 
§  The operator ? makes the preceding 

expression optional: 
♦  ab?c represents both ac and abc. 

§  The operator | represents an alternative 
between two expressions: 
♦  ab|cd represnts both the sequence ab and the 

sequence cd. 
§  The round parentheses, ( and ), allow 

expressing a grouping to define the priorities 
among operators 
♦  (ab|cd+)?ef represents such sequences as ef, 

abef, cdddef, etc. 

Repetitions 
§  The operator + makes the preceding 

expression can be repeated 1 or more times: 
♦ ab+c represents sequences starting by a, 

ending in c, and containing at least one b. 

§  The operator * indicates the preceding 
expression can be repeated 0 or more times: 
♦ ab*c represents sequences starting by a, 

ending in c, and containing any number of b. 

§  The operator {l,h} matches from l to h 
repetitions of the preceding expression 



Recognizer 
§  An RE can be transformed into NFA 

(Non-deterministic Finite-state 
Automata) 
♦ Using the Algorithm Thompson-

McNaughton-Yamada 
§  Then an NFA can be transformed into a 

DFA (Deterministic F-s A) 
§  A DFA can be encoded into a table that 

defines the rules executed by a state 
machine to recognize a sequence of 
characters 
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Recognizer example 
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Recognizer example 
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Capture groups 
§  Every pair of matching parentheses 

defines a capture group 
♦ Group 0 is the whole matched string 

([+-]?)([0-9]+) 

♦ Non capturing group: (?:E)
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Group 1 Group 2 

Group 0 



Railroad diagram 

Regexper
You thought you only had two problems… 
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Display Download //  Permalink

([+-]?)([0-9]+)

([+-]?)([0-9]+) 

Generated with: http://regexper.com 

Context 
§  Look-behind 

♦ (?<=E) means that E must precede the 
following RE, though E is not part of the 
recognized RE 

♦ (?<!E) means E must not precede 
§  Look-ahead 

♦ (?=E) means that E must follow the 
preceding RE, though E is not part of the 
recognized RE 

♦ (?!E) means that E must not follow 



REGEXP IN JAVA 

RegExp in Java 
§  Package 

♦  java.util.regex 

§  Pattern represents the automata: 
Pattern p=Pattern.compile("[+-]?[0-9]+"); 

§  Matcher represents the recognizer 
Matcher m = p.matcher("-4560"); 
boolean b = m.matches(); 
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Matcher 
§  Three recognition modes 

♦ matches() 
- Attemp matching the whole string 

♦ lookingAt() 
- Attempt a partial matching starting from 

beginning 
♦ find() 

- Attempt matching any substring 

§  Recognized string: 
♦ group()  
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Capture groups 
m = p.matcher("-4560"); 
if(m.matches()){ 
 for(int i=0; i<=m.groupCount(); ++i){ 
  System.out.println("Group "+i+" : '" 
          + m.group(i) + "'"); 
 } 

} 
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Group 0 : '-4560' 
Group 1 : '-' 
Group 2 : '4560' 

([+-]?)([0-9]+) 



Example: CSV with groups 
(,|^|\n|\r|\r\n)  
[ \t]* 
(?:([^\",\n\r]*) 
|"((?:[^"]*|"")*)")  
[ \t]* 

♦ When translating to a string in the code 
pay attention to special characters: 
- Backslash: \  
- Quotes: “ 
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Group 2 : normal cell 

Group 1 : preceding delimiter 

Group 3 : delimited cell 

Example: CSV 
Pattern re  = Pattern.compile( 
"(,|^|\n|\r|\r\n)" +    // G1 : prec sep 
"[ \t]*" +              // -  : lead spaces 
"(?:([^\",\n\r]*)" +    // G2 : normal cell 
"|\"((?:[^\"]*|\"\")*)\")"+//G3: delim cell   
"[ \t]*"            // - : trail spaces 
); 



Example: CSV 
Matcher m = re.matcher(csvContent); 
while(m.find()){ 
  if(!m.group(1).equals(","))  // new row 
   System.out.println("Row:"); 

  String c = m.group(2); 
  if(cell==null) 
    c = m.group(3).replaceAll("\"\"","\""); 
  System.out.println("\tCell:" + c); 
} 

Example CSV - Context 
§  Railroad diagram 

Generated with: http://regexper.com 

group #1

“,”

Start of line

line feed (0x0A)

carriage return (0x0D)

carriage return (0x0D) line feed (0x0A)

One of:

“”

tab (0x09)

group #2

None of:

“"”

“,”

line feed (0x0A)

carriage return (0x0D)

“"”

group #3

None of:

“"”

“""”

“"”

One of:

“”

tab (0x09)
line feed (0x0A)



Named groups 
§  Capture groups can be named: 

♦ E.g. (?<c>[^\",]*) 

§  Named groups can be accessed using 
group() method: 
♦ E.g. c = m.group("c"); 

Example: CSV 
Pattern re  = Pattern.compile( 
"(?<sep>,|^|\n|\r|\r\n)" +// G1 : prec sep 
"[ \t]*" +              // -  : lead spaces 
"(?:(?<c>[^\",\n\r]*)" +// G2 : normal cell 
"|\"(?<dc>(?:[^\"]*|\"\")*)\")"+//G3: delim 
"[ \t]*"            // - : trail spaces 
); 



Example: CSV named groups 
Matcher m = re.matcher(csvContent); 
while(m.find()){ 
  if(!m.group("sep").equals(",")) //new row 
   System.out.println("Row:"); 

  String c = m.group("c"); 
  if(cell==null) 
   c=m.group("dc").replaceAll("\"\"","\""); 
  System.out.println("\tCell:" + c); 
} 

Class Scanner 
§  A basic parser that can read primitive 

types and strings using regular 
expressions 

§  Basic usage 
♦ Construction from a stream, file, or string 

- E.g. new Scanner(new File("file.txt"))
♦ Check present of next token (optional) 

- E.g. hasNextInt()
♦ Detection of next token: 

- E.g. nextInt()



Scanner advanced usage 
File file = new File("file.csv");
try(Scanner fs = new Scanner(file)){
while(true){
  String c;
  while((c=fs.findInLine(pattern))!=null){
    System.out.println(c);
  }
  if(!fs.hasNextLine()) break;
  fs.nextLine();
}}

Summary 
§  Regular expression express complex 

sequences of characters 
§  Used to recognize parts of strings 

♦ Pattern contains the DFA 
♦ Matcher implements the recognizer 

§  RE are used extensively 
♦ String: replaceAll(), split() 
♦ Scanner: findInLine() 


