
Regular Expressions

Version 2.0.0 - May 2018

© Marco Torchiano, 2018

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

Regular Expression
§  Represent a simple and efficient way

to describe a sequence of characters
§  They can be used to:

♦ generate a conforming sequence of chars
♦ recognize a sequence of chars as

conforming with the RE
§  The ability to recognize a valid

sequence is fundamental in text
processing.

4

Regular Expressions

§  Represent a simple and efficient way to
describe sets of character strings

§  Operators allow representing:
♦ characters c
♦ sets of characters [abc] o [a-c]
♦ optionality exp ?
♦  repetition (0 o more) exp *
♦  repetition (1 o more) exp +
♦ alternatives exp1 | exp2
♦ concatenation exp1exp2
♦ grouping (exp)

Examples of RE
§  Positive integer number

♦ [0-9]+
§  Positive integer number w/o leading 0

♦ [1-9][0-9]*
§  Integer number positive or negative

♦ [+-]?[0-9]+
§  Floating point number

♦ [+-]?(([0-9]+\.[0-9]*)|
 ([0-9]*\.[0-9]+))

Regular expressions
§  RE can be used to check whether an

input string correspond to a given set
§  RE describes a sequence of characters

and use a set of operators:
♦ " \ [] ^ - ? . * + | () $ / { }
% < >

§  Letters and numbers in the input text
are described by themselves
♦ val1 represents the sequence ‘v’ ‘a’
‘l’ ‘1’ in the input text

Character set
§  Character sets are described using []:

♦  [0123456789] represents any integer number
§  In a set, the symbol – indicates a range of

characters:
♦  [0-9] represents any numeric character

§  To include - in the set, it must be first or last
char:
♦  [-+0-9] represents a number in the input text.

§  When a set begins with ^, the characters are
excluded:
♦  [^0-9] represents any non numeric character

§  The set of all characters except new line can be
described by a dot: .

Special characters
§  The new-line is represented by \n
§  Any white space is described by \s
§  Any digit is described by \d,

♦ i.e. [0-9]
§  Any word char is described by \w,

♦ i.e. [A-Za-z0-9_]
§  The beginning of text is ^
§  The end of text is $

Optional and alternative
§  The operator ? makes the preceding

expression optional:
♦  ab?c represents both ac and abc.

§  The operator | represents an alternative
between two expressions:
♦  ab|cd represnts both the sequence ab and the

sequence cd.
§  The round parentheses, (and), allow

expressing a grouping to define the priorities
among operators
♦  (ab|cd+)?ef represents such sequences as ef,

abef, cdddef, etc.

Repetitions
§  The operator + makes the preceding

expression can be repeated 1 or more times:
♦ ab+c represents sequences starting by a,

ending in c, and containing at least one b.

§  The operator * indicates the preceding
expression can be repeated 0 or more times:
♦ ab*c represents sequences starting by a,

ending in c, and containing any number of b.

§  The operator {l,h} matches from l to h
repetitions of the preceding expression

Recognizer
§  An RE can be transformed into NFA

(Non-deterministic Finite-state
Automata)
♦ Using the Algorithm Thompson-

McNaughton-Yamada
§  Then an NFA can be transformed into a

DFA (Deterministic F-s A)
§  A DFA can be encoded into a table that

defines the rules executed by a state
machine to recognize a sequence of
characters

11

Recognizer example

12

0

1

ε /[+-]/

2

ε

3

/[0-9]/ ε

4

ε

0

1

/[+-]/

2

/[0-9]/

/[0-9]/

/[0-9]/

[+-]?[0-9]+

http://hackingoff.com/compilers/regular-expression-to-nfa-dfa

RE
NFA

DFA

Recognizer example

13

[+-]?[0-9]+

http://hackingoff.com/compilers/regular-expression-to-nfa-dfa

RE
NFA

DFA

0

1

2

3

4

0

1

2

ε

ε

ε

/[+-]/

ε

/[0-9]/

/[0-9]/

/[0-9]/

/[+-]/

Capture groups
§  Every pair of matching parentheses

defines a capture group
♦ Group 0 is the whole matched string

([+-]?)([0-9]+)

♦ Non capturing group: (?:E)

14

Group 1 Group 2

Group 0

Railroad diagram

Regexper
You thought you only had two problems…

Changelog
Documentation
Source on GitHub

group #1

One of:

“+”

“-”

group #2

One of:

-“0” “9”

Created by Jeff Avallone // Generated images licensed:

Display Download // Permalink

([+-]?)([0-9]+)

([+-]?)([0-9]+)

Generated with: http://regexper.com

Context
§  Look-behind

♦ (?<=E) means that E must precede the
following RE, though E is not part of the
recognized RE

♦ (?<!E) means E must not precede
§  Look-ahead

♦ (?=E) means that E must follow the
preceding RE, though E is not part of the
recognized RE

♦ (?!E) means that E must not follow

REGEXP IN JAVA

RegExp in Java
§  Package

♦  java.util.regex

§  Pattern represents the automata:
Pattern p=Pattern.compile("[+-]?[0-9]+");

§  Matcher represents the recognizer
Matcher m = p.matcher("-4560");
boolean b = m.matches();

18

Matcher
§  Three recognition modes

♦ matches()
- Attemp matching the whole string

♦ lookingAt()
- Attempt a partial matching starting from

beginning
♦ find()

- Attempt matching any substring

§  Recognized string:
♦ group()

19

Capture groups
m = p.matcher("-4560");
if(m.matches()){
 for(int i=0; i<=m.groupCount(); ++i){
 System.out.println("Group "+i+" : '"
 + m.group(i) + "'");
 }

}

20

Group 0 : '-4560'
Group 1 : '-'
Group 2 : '4560'

([+-]?)([0-9]+)

Example: CSV with groups
(,|^|\n|\r|\r\n)
[\t]*
(?:([^\",\n\r]*)
|"((?:[^"]*|"")*)")
[\t]*

♦ When translating to a string in the code
pay attention to special characters:
- Backslash: \
- Quotes: “

21

Group 2 : normal cell

Group 1 : preceding delimiter

Group 3 : delimited cell

Example: CSV
Pattern re = Pattern.compile(
"(,|^|\n|\r|\r\n)" + // G1 : prec sep
"[\t]*" + // - : lead spaces
"(?:([^\",\n\r]*)" + // G2 : normal cell
"|\"((?:[^\"]*|\"\")*)\")"+//G3: delim cell
"[\t]*" // - : trail spaces
);

Example: CSV
Matcher m = re.matcher(csvContent);
while(m.find()){
 if(!m.group(1).equals(",")) // new row
 System.out.println("Row:");

 String c = m.group(2);
 if(cell==null)
 c = m.group(3).replaceAll("\"\"","\"");
 System.out.println("\tCell:" + c);
}

Example CSV - Context
§  Railroad diagram

Generated with: http://regexper.com

group #1

“,”

Start of line

line feed (0x0A)

carriage return (0x0D)

carriage return (0x0D) line feed (0x0A)

One of:

“”

tab (0x09)

group #2

None of:

“"”

“,”

line feed (0x0A)

carriage return (0x0D)

“"”

group #3

None of:

“"”

“""”

“"”

One of:

“”

tab (0x09)
line feed (0x0A)

Named groups
§  Capture groups can be named:

♦ E.g. (?<c>[^\",]*)

§  Named groups can be accessed using
group() method:
♦ E.g. c = m.group("c");

Example: CSV
Pattern re = Pattern.compile(
"(?<sep>,|^|\n|\r|\r\n)" +// G1 : prec sep
"[\t]*" + // - : lead spaces
"(?:(?<c>[^\",\n\r]*)" +// G2 : normal cell
"|\"(?<dc>(?:[^\"]*|\"\")*)\")"+//G3: delim
"[\t]*" // - : trail spaces
);

Example: CSV named groups
Matcher m = re.matcher(csvContent);
while(m.find()){
 if(!m.group("sep").equals(",")) //new row
 System.out.println("Row:");

 String c = m.group("c");
 if(cell==null)
 c=m.group("dc").replaceAll("\"\"","\"");
 System.out.println("\tCell:" + c);
}

Class Scanner
§  A basic parser that can read primitive

types and strings using regular
expressions

§  Basic usage
♦ Construction from a stream, file, or string

- E.g. new Scanner(new File("file.txt"))
♦ Check present of next token (optional)

- E.g. hasNextInt()
♦ Detection of next token:

- E.g. nextInt()

Scanner advanced usage
File file = new File("file.csv");
try(Scanner fs = new Scanner(file)){
while(true){
 String c;
 while((c=fs.findInLine(pattern))!=null){
 System.out.println(c);
 }
 if(!fs.hasNextLine()) break;
 fs.nextLine();
}}

Summary
§  Regular expression express complex

sequences of characters
§  Used to recognize parts of strings

♦ Pattern contains the DFA
♦ Matcher implements the recognizer

§  RE are used extensively
♦ String: replaceAll(), split()
♦ Scanner: findInLine()

