
Java Basic Features

Object Oriented Programming

http://softeng.polito.it/courses/09CBI

 Version 1.5.2
© Maurizio Morisio, Marco Torchiano, 2018

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the

license terms of this work.
§  Any of these conditions can be waived if you get permission from the

copyright holder.

Your fair use and other rights are in no way affected by the above.

Learning objectives
§  Learn the syntax of the Java language
§  Understand the primitive types
§  Understand how classes are defined

and objects used
§  Understand how modularization and

scoping work
§  Understand how arrays work
§  Learn about wrapper types

3

4

Comments
§  C-style comments (multi-lines)

/* this comment is so long
 that it needs two lines */

§  Comments on a single line

// comment on one line

5

Code blocks and Scope
§  Java code blocks are the same as in C
§  Each block is enclosed by braces { }

and starts a new scope for the variables
§  Variables can be declared both at the

beginning and in the middle of a block

for (int i=0; i<10; i++){
int x = 12;
...
int y;
...

}

6

Control statements
§  Similar to C

♦ if-else
♦ switch,
♦ while
♦ do-while
♦ for
♦ break
♦ continue

Switch statements with strings
§  Strings can be used as cases values

- Since Java 7
switch(season){
case “summer”:
case “spring”: temp = “hot”;
 break;
}
- Compiler generates more efficient bytecode

from switch using String objects than from
chained if-then-else statements.

Boolean
§  Java has an explicit type (boolean) to

represent logical values (true, false)
§  Conditional constructs require

boolean conditions
♦ Illegal to evaluate integer condition 

 int x = 7; if(x){…} //NO
♦ Use relational operators if (x != 0)
♦ Avoids common mistakes, e.g. if(x=0)

8

9

Passing parameters
§  Parameters are always passed by value
§  ...they can be primitive types or object

references

♦ Note: only the object reference is copied
not the whole object

10

Elements in a OO program
Structural elements 

(types)  
(compile time)

Dynamic elements 
(instances)  
(run time)

§  Class
§  Primitive type

§  Reference
§  Variable

11

Classes and primitive types

§  Class
class Exam {}

§  Variable of type
reference

Exam e;
e = new Exam();

§  type primitive
int, char,
float

§  Variable of type

primitive
int i;

Type

Instance

12

§ Defined in the language:
♦  int, double, boolean, etc.

§  Instance declaration:
♦ Declares instance name
♦ Declares the type
♦ Allocates memory space for the value

Primitive type

0

int i;

13

Class
§  Defined by developer (eg, Exam) or in the Java

runtime libraries (e.g., String)
§  The declaration

§  …allocates memory space for the reference

(�pointer�)
 …and sometimes it initializes it with null by default

§  Allocation and initialization of the object value are
made later by its constructor

Exam e; e null

Object
Exam

e e = new Exam(); 0Xffe1

PRIMITIVE TYPES

Primitive types

15

Type Size Encoding
boolean 1 bit -
char 16 bits Unicode UTF16
byte 8 bits Signed integer 2C
short 16 bits Signed integer 2C
int 32 bits Signed integer 2C
long 64 bits Signed integer 2C
float 32 bits IEEE 754 sp
double 64 bits IEEE 754 dp
void -

Logical
size !=
memory

occupation

16

Literals
§  Literals of type int, float, char, strings

follow C syntax
♦ 123 256789L 0xff34 123.75
0.12375e+3

♦  ’a’ ’%’ ’\n’ ”prova” ”prova\n”
§  Boolean literals (do not exist in C) are

♦ true, false

Operators (integer and f.p.)
§ Operators follow C syntax:

♦ arithmetical + - * / %
♦ relational == != > < >= <=
♦ bitwise (int) & | ^ << >> ~
♦ Assignment = += -= *= /=
 %= &= |= ^=

♦ Increment ++ --
§  Chars are considered like integers

(e.g. switch)

17

18

Logical operators
§  Logical operators follows C syntax:

&& || ! ^

§ Warning: logical operators work ONLY
on boolean operands
♦ Type int is NOT treated like a boolean:

this is different from C
♦ Relational operators return boolean

values

CLASSES AND OBJECTS

Class
§ Object descriptor

♦ Defines the common structure of a set of
objects

§  Consists of a set of members
♦ Attributes
♦ Methods
♦ Constructors

21

Class - definition
public class Car {
 String color;
 String brand;
 boolean turnedOn;
 void turnOn() {
 turnedOn = true;
 }
 void paint (String newCol) {
 color = newCol;
 }
 void printState () {
 System.out.println(�Car � + brand + ��� + color);
 System.out.println(�the engine is�
 +(turnedOn?�on�:�off�));

 }
}

Attributes
Car

color
brand
turnedOn

turnOn
paint
printState

Name

Methods

22

Methods
§ Methods represent the messages that

an object can accept
♦ turnOn
♦ paint
♦ printState

§ Methods may accept arguments
♦ paint(“Red”)

Overloading
§  A class may define different methods

with the same name
§  They must have have distinct signature
§  A signature consists of:

♦ Method name
♦ Ordered list of argument types

§  The method whose argument types list
matches the actual parameters, is
selected

23

Overloading
class Car {
 String color;
 void paint(){
 color = “white”;
 }
 void paint(int i){}
 void paint(String newCol){
 color = newCol;
 }
}

25

Overloading
public class Foo{
 public void doIt(int x, long c){
 System.out.println("a");
 }
 public void doIt(long x, int c){
 System.out.println("b");
 }
 public static void main(String args[]){
 Foo f = new Foo();
 f.doIt(5 ,(long)7); // �a�
 f.doIt((long)5 , 7); // �b�
 }
}

26

Objects
§  An object is identified by:

♦ Class, which defines its structure (in
terms of attributes and methods)

♦ State (values of attributes)
♦ Internal unique identifier

§  Zero, one or more references can
point to the same object
♦ Aliasing

27

Objects
class Car {
 String color;
 void paint(){
 color = “white”;
 }
 void paint(String newCol) {
 color = newCol;
 }
}
Car a1, a2;
a1 = new Car();
a1.paint(“green”);
a2 = new Car();

28

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

? a1
? a2

Two uninitialized references
are created, they can’t be

used in any way.  
A reference is not an object

29

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

? a1
? a2

a1 : Car

An object is created
and the “pointer”
stored into the

reference a1

30

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

? a1
? a2

a1 : Car

Method paint() is
invoked on the

object through the
reference a1

31

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

a1
? a2

a1 : Car

Two references point
to the same object.

This is aliasing

32

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

a1

a2

a1 : Car

null

Only one reference
points to the object

X

33

Objects and references
Car a1, a2;
a1 = new Car();
a1.paint(“yellow”);
a2 = a1;
a1 = null;
a2 = null;

null a1

a2

a1 : Car

null X No reference pointing to
the object, which is

unreachable and may be
disposed of by the
garbage collector

34

Objects Creation
§  Creation of an object is performed

using the keyword new
§  It returns a reference to the piece of

memory containing the created object

Motorcycle m = new Motorcycle();

35

The keyword new
§  Creates a new instance of the specific class
§  Allocates the required memory in the heap
§  Calls the constructor of the object (a special

method without return type and with the
same name of the class)

§  Returns a reference to the new object
created

§  Constructor can have parameters, e.g.
♦ String s = new String(“ABC”);

36

Heap
§  A part of the memory used by an executing

program to store data dynamically created
at run-time

§  C: malloc, calloc and free

♦  Instances of types in static memory or in heap

§  Java: new
♦  Instances (Objects) are always in the heap

37

Constructor (1)
§  Constructor is a special method containing

the operations (e.g. initialization of
attributes) to be executed on each object as
soon as it is created

§  Attributes are always initialized
§  If no constructor at all is declared, a default

one (with no arguments) is provided
§  Overloading of constructors is often used

Constructor (2)
§  Attributes are always initialized before

any possible constructor
♦  Attributes are initialized with default values

-  Numeric: 0 (zero)
-  Boolean: false
-  Reference: null

§  Return type must not be declared for
constructors
♦  If present, constructor is considered a

method and it is not invoked upon
instantiation

39

Constructors with overloading
class Car { // …
// Default constructor, creates a red Ferrari
 public Car(){
 color = "red";
 brand = "Ferrari";
 }
// Constructor accepting the brand only
 public Car(String carBrand){
 color = "white”;
 brand = carBrand;
 }
// Constructor accepting the brand and the color
 public Car(String carBrand, String carColor){
 color = carColor;
 brand = carBrand;
 }
}

40

Destruction of objects
§ Memory release, in Java, is no longer a

programmer’s concern
♦ Managed memory language

§  Before the object is really destroyed
the method finalize, if defined, is
invoked:

public void finalize()

Current object – a.k.a this
§ During the execution of a method it is

possible to refer to the current object
using the keyword this
♦ The object upon which the method has

been invoked
§  This makes no sense within methods

that have not been invoked on an
object
♦ E.g. the main method

42

Method invocation
§  A method is invoked using dotted

notation
objectReference.method(parameters)

§  Example:

Car a = new Car();

a.turnOn();
a.paint("Blue");

43

Note
§  If a method is invoked from within

another method of the same object
dotted notation is not mandatory

 class Book {
 int pages;
 void readPage(int n) { … }
 void readAll() {
 for(int i=0; i<pages; i++)
 readPage(i);
 }
}

44

Note (cont�d)
§  In such cases this is implied
§  It is not mandatory

class Book {
 int pages;
 void readPage(int n){…}
 void readAll() {
 for(…)
 readPage(i);
 }
} void readAll() {

 for(…)
 this.readPage(i);
 }

equivalent

45

Access to attributes
§ Dotted notation

objectReference.attribute
♦ A reference is used like a normal variable

Car a = new Car();
a.color = "Blue"; //what’s wrong here?
boolean x = a.turnedOn;

46

Access to attributes
§ Methods accessing attributes of the

same object do not need to use the
object reference
class Car {
 String color;
 …
 void paint(){
 color = “green”;
 // color refers to current obj
 }
}

47

Using �this� for attributes
§  The use of this is not mandatory
§  It can be useful in methods to

disambiguate object attributes from
local variables

class Car{
String color;
...
void paint (String color) {
 this.color = color;
}

}

48

Chaining dotted notations
§  Dotted notations can be combined
System.out.println(�Hello world!�);

♦ System is a Class in package java.lang
♦ out is a (static) attribute of System

referencing an object of type PrintStream
(representing the standard output)

♦ println() is a method of PrintStream
which prints a text line followed by a new-
line

Method Chaining
public class Counter {
 int value;
 public Counter reset(){
 value=0; return this;
 }
 public Counter increment(int by){
 this.value+=by; return this;
 }
 public Counter print(){
 System.out.println(value);
 return this;
 }

}
Counter cnt = new Counter();
cnt.reset().print()
 .increment(10).print()
 .decrement(7);

50

Operations on references
§  Only the comparison operators == and !=

are defined
♦ Note well: the equality condition is evaluated on

the values of the references and NOT on the
objects themselves!

♦ The relational operators tells whether the
references points to the same object in memory

§  Dotted notation is applicable to object
references

§  There is NO pointer arithmetic

SCOPE AND ENCAPSULATION

52

Example
§  Laundry machine, design1

♦ commands:
- time, temperature, amount of soap

♦ Different values depending if you wash
cotton or wool, ….

§  Laundry machine, design2
♦ commands:

- key C for cotton, W for wool, Key D for
knitted robes

53

Example (cont�d)
§ Washing machine, design3

♦ command:
- Wash!

♦ insert clothes, and the washing machine
automatically select the correct program

§ Hence, there are different solutions

with different level of granularity /
abstraction

54

Motivation
§  Modularity = cut-down inter-components

interaction
§  Info hiding = identifying and delegating

responsibilities to components
♦  components = classes
♦  interaction = read/write attributes
♦  interaction = calling a method

§  Heuristics
♦ Attributes invisible outside the class
♦ Visible methods are the ones that can be

invoked from outside the class

55

Scope and Syntax
§  Visibility modifiers

♦ Applicable to members of a class
§  private

♦ Member is visible and accessible from
instances of the same class only

§  public
♦ Member is visible and accessible from

everywhere

56

class Car {
 public String color;
}

class Car {
 private String color;
 public void paint(String color)
 {this.color = color;}
} better

Info hiding

Car a = new Car();
a.color="white"; // ok

Car a = new Car();
a.color = "white"; // error
a.paint("green"); // ok

57

Info hiding
class Car{

 private String color;

 public void paint();

}

class B {

 public void f1(){

 ...

 };

}

yes

no

58

Access

yes

yes

Public

no yes

Private
(attribute/
method)

Method of
another class

Method in the
same class

59

Getters and setters
§ Methods used to read/write a private

attribute
§  Allow to better control in a single

point each write access to a private
field

public String getColor() {
 return color;
}
public void setColor(String newColor) {
 color = newColor;
}

60

Example without getter/setter
public class Student {

public String first;
public String last;
public int id;
public Student(…){…}

}

public class Exam {

public int grade;
public Student student;
public Exam(…){…}

}

61

Example without getter/setter
class StudentExample {
 public static void main(String[] args) {
 // defines a student and her exams
 // lists all student�s exams

 Student s=new Student(�Alice",�Green",1234);
 Exam e = new Exam(30);
 e.student = s;
 // print vote
 System.out.println(e.grade);

 // print student
 System.out.println(e.student.last);
 }
}

62

Example with getter/setter
class StudentExample {
 public static void main(String[] args) {
 Student s = new Student(�Alice�, �Green�,
 1234);

 Exam e = new Exam(30);

 e.setStudent(s);
 // prints its values and asks students to
 // print their data
 e.print();
 }
}

63

Example with getter/setter
public class Student {

 private String first;
 private String last;
 private int id;

 public String toString() {
 return first + " " +
 last + " " +
 id;
 }
}

64

Example with getter/setter
public class Exam {
 private int grade;
 private Student student;

 public void print() {
 System.out.println(�Student � +
 student.toString() + �got � + grade);
 }

 public void setStudent(Student s) {
 this.student =s;
 }
}

Getters & setters vs. public fields
§ Getter

♦ Allow changing the internal
representation without affecting
- E.g. can perform type conversion

§  Setter
♦ Allow performing checks before

modifying the attribute
- E.g. Validity of values, authorization

66

Packages
§  Class is a better mechanism of

modularization than a procedure
§  But it is still small, when compared to

the size of an application
§  For the purpose of code organization

and structuring Java provides the
package feature

67

Package
§  A package is a logic set of class

definitions
§  These classes consist in several files, all

stored in the same folder
§  Each package defines a new scope (i.e.,

it puts bounds to visibility of names)
§  It is therefore possible to use same class

names in different package without
name-conflicts

68

Package name
§  A package is identified by a name with

a hierarchic structure (fully qualified
name)
♦ E.g. java.lang (String, System, …)

§  Conventions to create unique names
♦ Internet name in reverse order
♦ it.polito.myPackage

69

Examples
§  java.awt

♦ Window
♦ Button
♦ Menu

§  java.awt.event (sub-package)
♦ MouseEvent
♦ KeyEvent

70

Creation and usage
§ Declaration:

♦ Package statement at the beginning of
each class file

package packageName;

§  Usage:
♦ Import statement at the beginning of

class file (where needed)
import packageName.className;
import java.awt.*;

Import all classes
but not the sub

packages

Import single class
(class name is in

scope)

71

Access to a class in a package
§  Referring to a method/class of a package

int i = myPackage.Console.readInt()

§  If two packages define a class with the

same name, they cannot be both imported
§  If you need both classes you have to use

one of them with its fully-qualified name:
import java.sql.Date;
Date d1; // java.sql.Date
java.util.Date d2 = new java.util.Date();

Default package
§ When no package is specified, the

class belongs to the default package
♦ The default package has no name

§  Classes in the default package cannot
be accessed by classes residing in
other packages

§  Usage of default package is a bad
practice and is discouraged

73

Package and scope
§  Scope rules also apply to packages
§  The �interface� of a package is the set of

public classes contained in the package

§  Hints

♦ Consider a package as an entity of
modularization

♦ Minimize the number of classes, attributes,
methods visible outside the package

74

Package visibility

class B {

 public int a3;

 private int
a4;

}

class A {

 public int a1;

 private int a2;

 public void f1(){}

}
no

yes

Package P

Package visibility

75

Visibility w/ multiple packages
§  public class A { }

♦ Class and public members of A are visible
from outside the package

§  class B { }
♦ Class and any members of B are not

visible from outside the package
§  private class A { }

♦ Illegal: why?

The class and its members would
be visible to themselves only

76

Multiple packages

class C {
 public void f2(){}
}

Package Q

no

Package P

no

class B {
 public int a3;
 private int a4;
}

class A {
 public int a1;
 private int a2;
 public void f1(){}
}

77

Multiple packages

Package Q

class B {
 public int a3;
 private int a4;
}

public class A {
 public int a1;
 private int a2;
 public void f1(){}
}

yes

Package P

no

class C {
 public void f2(){}
}

78

Access rules

Yes Yes Yes Public member in
public class

No Yes Yes Public member in
package class

No Yes Yes Package member

No No Yes Private member

Method of other
class in other
package

Method of other
class in the same
package

Method of the
same class

STRINGS

80

String
§ No primitive type to represent string
§  String literal is a quoted text
§  C

♦ char s[] = “literal”
♦ Equivalence between string and char

arrays
§  Java

♦ char[] != String
♦ String class in java.lang library

81

String and StringBuffer
§  class String (java.lang)

♦ Not modifiable / Immutable
§  class StringBuffer (java.lang)

♦ Modifiable / Mutable

String s = new String(�literal�);
StringBuffer sb=new StringBuffer(�lit�);

82

Operator +
§  It is used to concatenate 2 strings

"This string" + " is made by two strings"

§ Works also with other types

(automatically converted to string)

System.out.println("pi = " + 3.14);
System.out.println("x = " + x);

83

String
§  int length()

♦ returns string length
§  boolean equals(String s)

♦ compares the values of 2 strings
String s1, s2;
s1 = new String(�First string�);
s2 = new String(�First string�);
System.out.println(s1);
System.out.println(�Length of s1 = � +
s1.length());
if (s1.equals(s2)) // true
if (s1 == s2) // false

84

String
§  String valueOf(int)

♦ Converts int in a String – available for all
primitive types

§  String toUpperCase()
§  String toLowerCase()
§  String subString(int startIndex)
§  int indexOf(String str)

♦ Returns the index of the first occurrence of str
§  String concat(String str)
§  int compareTo(String str)

85

String
§  String subString(int startIndex)

String s = “Human”;
s.subString(2) à “man”

§  String subString(int start, int end)
♦ Char ‘start’ included, ‘end’ excluded
String s = “Greatest”;
s.subString(0,5) à“Great”

§  int indexOf(String str)
♦ Returns the index of the first occurrence of str

§  int lastIndexOf(String str)
♦ The same as before but search starts from the end

86

StringBuffer
§  append(String str)

♦  Inserts str at the end of string
§  insert(int offset, String str)

♦  Inserts str starting from offset position
§  delete(int start, int end)

♦ Deletes character from start to end (excluded)
§  reverse()

♦ Reverses the sequence of charactersaa

They all return a StringBuffer enabling chaining

Unicode
§  Standard that assigns a unique code

to every character in any language
♦ Core specification gives the general

principles
♦ Code charts show representative glyphs

for all the Unicode characters.
♦ Annexes supply detailed normative

information
♦ Character Database normative and

informative data for implementers
http://www.unicode.org/versions/latest/

Characters and Glyphs
§  Character: the abstract concept

♦ e.g. LATIN SMALL LETTER I
§ Glyph: the graphical representation of

a character

♦ e.g. i i i i	i	
§  Font: a collection of glyphs

Unicode Codepoint
§  Codepoint: the numeric

representation of a character
♦ Included in the range 0 to 10FFFF16 (23

bits)
♦ Represented with U+ followed by the

hexadecimal code
♦ e.g. U+0069 for 'i'

Unicode Encoding
§ Mapping from a byte sequence to a

code point.
§  UTF-32 fixed width, high memory

occupation (4 bytes)
§  UTF-16 variable width, represents

♦ codepoints from `U+0` to `U+d7ff` on
16 bits (2 bytes)

♦ codepoints from `U+10000` to
`U+10ffff` on 32 bits (4 bytes)

Unicode Encoding
§  UTF-8 variable width,

♦ codepoints `U+00` to `U+7f` are
mapped directly to bytes,
- i.e. ASCII transparent

♦ most non-ideographyc codepoints are
represented on 2 bytes
- e.g. `U+00C8` represents character ‘è’ and

is mapped to two bytes: `0xC3` `0xA8`.

The IS0-8859-1 encoding
interprets them as ���

WRAPPER CLASSES

93

Motivation
§  In an ideal OO world, there are only

classes and objects
§  For the sake of efficiency, Java use

primitive types (int, float, etc.)

§ Wrapper classes are object versions of

the primitive types
§  They define conversion operations

between different types

94

Wrapper Classes
Defined in java.lang package

Primitive type Wrapper Class
 boolean Boolean
 char Character
 byte Byte
 short Short
 int Integer
 long Long
 float Float
 double Double
 void Void

95

Conversions

Integer wi

int i String s

.toString() Integer.valueOf(s)
new Integer(s)

Integer.parseInt(s)

new Integer(i)

wi.intValue()

String.valueOf(i)
+

96

Example
Integer obj = new Integer(88);
String s = obj.toString();
int i = obj.intValue();

int j = Integer.parseInt("99");
int k=(new Integer(99)).intValue();

Using Scanner
§  Scanner can be initialized with a string
Scanner s = new Scanner("123");

§  then values can be parsed
int i = s.nextInt();

§  In addition a scanner is able to parse
several numbers in the same string

Autoboxing
§  Since Java 5 an automatic conversion

between primitive types and wrapper
classes (autoboxing) is performed.

 Integer i= new Integer(2); int j;
 j = i + 5;
 //instead of:
 j = i.intValue()+5;
 i = j + 2;
 //instead of:
 i = new Integer(j+2);

98

Character
§  Utility methods on the kind of char

♦ isLetter(), isDigit(),
isSpaceChar()

§  Utility methods for conversions
♦ toUpper(), toLower()

99

ARRAYS

101

Array
§  An array is an ordered sequence of

variables of the same type which are
accessed through an index

§  Can contain both primitive types or
object references (but no object
values)

§  Array dimension can be defined at
run-time, during object creation
(cannot change afterwards)

102

Array declaration
§  An array reference can be declared

with one of these equivalent syntaxes

§  In Java an array is an Object and it is

stored in the heap
§  Array declaration allocates memory

space for a reference, whose default
value is null

null a

int[] a;
int a[];

103

Array creation
§ Using the new operator…

§ …or using static initialization,
filling the array with values

int[] a;
a = new int[10];
String[] s = new String[5];

int[] primes = {2,3,5,7,11,13};
Person[] p = { new Person(�John�),
 new Person(�Susan�) };

104

Example - primitive types

int[] a;

a = new int[6];

int[] primes =
{2,3,5,7,11,13};

null
a heap

a heap

0
0
0
0
0
0

primes heap

13
11
7
5
3
2

105

Example - object references
String[] s = new
String[6];

s[1] = new
String(�abcd�);

Person[] p =
{new Person(�John�) ,
 new Person(�Susan�)};

s heap

null
null
null
null
null
null

p heap
John

 Susan

s heap

null
null
null
null

null
�abcd�

106

Operations on arrays
§  Elements are selected with brackets []

(C-like)
♦ But Java makes bounds checking

§  Array length (number of elements) is

given by attribute length

for (int i=0; i < a.length; i++)
 a[i] = i;

107

Operations on arrays
§  An array reference is not a pointer to

the first element of the array
§  It is a pointer to the array object

§  Arithmetic on pointers does not exist

in Java

108

For each
§ New loop construct:
 for(Type var : set_expression)

♦ Very compact notation
♦ set_expression can be

- either an array
- a class implementing Iterable

♦ The compiler can generate automatically
the loop with correct indexes
- Less error prone

109

For each - example
§  Example:
 for(String arg : args){
 //...
 }

♦ is equivalent to
 for(int i=0; i<args.length;++i){
 String arg= args[i];
 //...
 }

110

Homework
§  Create an object representing an

ordered list of integer numbers (at
most 100)

§  print()

♦ prints current list
§  add(int) and add(int[])

♦ Adds the new number(s) to the list

111

Multidimensional array
§  Implemented as array of arrays

Person[][] table = new Person[2][3];
table[0][2] = new Person(“Mary”);

table

null
null

null
null
null

�Mary�

heap

table[0]

table[0][2]

112

Rows and columns
§  As rows are not stored in adjacent

positions in memory they can be
easily exchanged

double[][] balance = new double[5][6];
...
double[] temp = balance[i];
balance[i] = balance[j];
balance[j] = temp;

113

Rows with different length
§ A matrix (bidimensional array) is

indeed an array of arrays
int[][] triangle = new int[3][]

for (int i=0; i< triangle.length; i++)
 triangle[i] = new int[i+1];

triangle

null
null
null

heap

triangle
0

0
0 0

0
0

114

Tartaglia�s triangle
§  Write an application printing out the

following Tartaglia�s triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

4 = 3 + 1

OTHER FEATURES

116

Variable arguments
§  It is possible to pass a variable number

of arguments to a method using the
varargs notation

 method(type ... args)
§  The compiler assembles an array that

can be used to scan the actual
arguments
♦ Type can be primitive or class

117

Variable arguments- example
static int min(int... values){
 int res = Integer.MAX_VALUE;
 for(int v : values){
 if(v < res) res=v;
 }
 return res;

}
public static void main(String[] args) {
 int m = min(9,3,5,7,2,8);
 System.out.println("min=” + m);
}

Enum
§ Defines an enumerative type
public enum Suits {
 SPADES, HEARTS, DIAMONDS, CLUBS
}

§  Variables of enum types can assume
only one of the enumerated values
 Suits card = Suits.HEARTS;

♦ They allow much stricter static checking
compared to integer constants (e.g. in C)

118

Enum
§  Enum can are similar to a class that

automatically instantiates the values

class Suits {
 public static final Suits HEARTS=
 new Suits (“HEARTS”,0);

 public static final Suits DIAMONDS=
 new Suits(“DIAMONDS”,1);
 public static final Suits CLUBS=
 new Suits (“CLUBS”, 2);
 public static final Suits SPADES=
 new Suits (“SPADES”, 3);
 private Suits (String enumName, int index)
{…}

 }

119

STATIC ATTRIBUTES AND
METHODS

121

Class variables
§  Represent properties which are common to

all instances of a class
§  They exist even when no object has been

instantiated yet
§  They are defined with the static modifier

class Car {
 static int countBuiltCars = 0;
 public Car(){
 countBuiltCars++;
 }
}

122

public class HelloWorld {
 public static void main (String args[]) {
 System.out.println(“Hello World!”);
 }
}

Static methods
§  Static methods are not related to any

instance
§  They are defined with the static modifier
§  Used to implement functions

public class Utility {
 public static int inverse(double n){
 return 1 / n;
 }
}

Static members access
§  The name of the class is used to

access the member:
Car.countCountBuiltCars
Utility.inverse(10);

§  It is possible to import all static items:
import static package.Utility.*;
♦ Then all static members are accessible

without specifying the class name
- Note: Impossible if class in default package

System class
§  Provides several utility functions and

objects e.g.
♦ static long currentTimeMillis()

- Current system time in milliseconds
♦ static void exit(int code)

- Terminates the execution of the JVM
♦ static final PrintStream out

- Standard output stream

Final Attributes
§  When attribute is declared final:

♦ cannot be changed after object construction
♦ can be initialized inline or by the constructor

class Student {
 final int years=3;
 final String id;
 public Student(String id){
 this.id = id;
 }
}

Final variables / parameters
§  Final parameters cannot be changed

♦ Non final parameters are treated as local
variables (initialized by the caller)

§  Final variables
♦ Cannot be modified after initialization
♦ Initialization can occur at declaration or

later

127

Constants
§  Use final static modifiers

♦ final implies not modifiable
♦ static implies non redundant
final static float PI = 3.14;
…
PI = 16.0; // ERROR, no changes
final static int SIZE; // missing init

§  All uppercase (coding conventions)

Static initialization block
§  Block of code preceded by static
§  Executed at class loading time

public final static double 2PI;

static {
 2PI = Math.acos(-1);

}

Example: Global directory (a)
§ Manages a global name directory

class Directory {

 public final static Directory root;
 static {

 root = new Directory();

 }
 // …

} What if not always
useful and expensive
creation?

Example: Global directory (b)
§  Manages a global directory

class Directory {
 private static Directory root;
 public static Directory getInstance(){
 if(root==null){
 root = new Directory();
 }
 return root;
 }
 // …
}

Created on-demand
at first usage

Singleton Pattern
§  Context:

♦ A class represents a concept that
requires a single instance

§  Problem:
♦ Clients could use this class in an

inappropriate way

Marco Torchiano 131

Singleton
-Singleton()
+getInstance(): Singleton
singletonOperation()

Singleton Pattern

132

private Singleton() { }
private static Singleton instance;
public static Singleton getInstance(){
 if(instance==null)
 instance = new Singleton();
 return instance;
}

Singleton class

Instantiation
static method

String pooling
§  Class String maintains a private static

pool of distinct strings
§ Method intern()

♦ Checks if any string in the pool equals()
♦ If not, adds the string to the pool
♦ Returns the string in the pool

§  For each string literal the compiler
generates code using intern() to keep
a single copy of the string

134

String internalization
public static final void main(){
 char chars[]= {'H’,'i'};
 String s1 = new String(chars);
 String s2 = new String(chars);
 String i1 = s1.intern();
 String i2 = s2.intern();
}

135

String internalization
char chars[]= {'H’,'i'};
String s1 = new String(chars);
String s2 = new String(chars);
String i1 = s1.intern();
String i2 = s2.intern();

s1

 : String
"Hi"

String pool

136

String internalization
char chars[]= {'H’,'i'};
String s1 = new String(chars);
String s2 = new String(chars);
String i1 = s1.intern();
String i2 = s2.intern();

s1

s2

 : String
"Hi"

String pool

 : String
"Hi"

137

String internalization
char chars[]= {'H’,'i'};
String s1 = new String(chars);
String s2 = new String(chars);
String i1 = s1.intern();
String i2 = s2.intern();

s1

s2

 : String
"Hi"

String pool

 : String
"Hi"

i1
.intern() adds the string to the pool

since none equal already exists

138

String internalization
char chars[]= {'H’,'i'};
String s1 = new String(chars);
String s2 = new String(chars);
String i1 = s1.intern();
String i2 = s2.intern();

s1

s2

 : String
"Hi"

String pool

 : String
"Hi"

i1

i2
.intern() returns the already

existing equal string

Internalizing literals
String ss1 = "Hi";

♦ Generates the same code as:
String ss1 = (new String(
 new char[]{'H',’i’}))
 .intern();
♦ On first occurrence of literal

- creates the string and
- adds it to the pool

♦ On later occurrences of literal
- creates a string
- return reference to the one in the pool

MEMORY MANAGEMENT

141

Memory types
Depending on the kind of elements they

include:
§  Static memory

♦  elements living for all the execution of a
program (class definitions, static variables)

§ Heap (dynamic memory)
♦ elements created at run-time (with ‘new’)

§  Stack
♦ elements created in a code block (local

variables and method parameters)

Memory types

dynamic
(heap)

static

local
(stack)

Memoria est omnis divisa in partes tres...

Example

String s;

s s=new String("abc");

:String
�abc�

static String ss;
.. main(){

}

ss

ss = s;

144

Types of variables
§  Instance variables

♦ Stored within objects (in the heap)
♦ A.k.a. fields or attributes

§  Local Variables
♦ Stored in the Stack

§  Static Variables
♦ Stored in static memory

145

Garbage collector
§  Component of the JVM that cleans the

heap memory from �dead� objects
§  Periodically it analyzes references and

objects in memory
§  ...and then it releases the memory for

objects with no active references
§ No predefined timing

♦ System.gc() can be used to suggest GC
to run as soon as possible

Object destruction
§  It�s not made explicitly but it is made

by the JVM garbage collector when
releasing the object’s memory
♦ Method finalize() is invoked upon

release
§ Warning: there is no guarantee an

object will be ever explicitly released

146

Finalization and garbage collection
class Item {
 public void finalize(){
 System.out.println("Finalizing”);
 }
}

public static void main(String args[]){
 Item i = new Item();
 i = null;
 System.gc(); // probably will finalize object
}

NESTED CLASSES

Nested class types
§  Static nested class

♦ Within the container name space
§  Inner class

♦ As above + contains a link to the creator
container object

§  Local inner class
♦ As above + may access (final) local variables

§  Anonymous inner class
♦ As above + no explicit name

(Static) Nested class
§  A class declared inside another class

package pkg;
class Outer {
 static class Nested {
 }
}

§  Similar to regular classes
♦ Subject to usual member visibility rules
♦ Fully qualified name includes the outer class:

- pkg.Outer.Inner

(Static) Nested class - Usage
§  Static nested classes can be used to

hide classes that are used only within
another class
♦ Reduce namespace pollution
♦ Encapsulate internal details
♦ Nested class lies within the scope of the

outer class

(Static) Nested class - Example
public class StackOfInt{

 private static class Element {

 int value;

 Element next;

 }

 private Element head

 public void push(int v){ … }

 public int void pop(){ … }

}

Inner Class
package pkg;
class Outer {
 class Inner{
 }
}

§  Any inner class instance is associated
with the instance of its enclosing class
that instantiated it
♦ Cannot be instantiated from a static method

§  Has direct access to that enclosing
object methods and fields

A.k.a. non-static nested class

Inner Class (example)
public class Counter {
 int i;
 public class Incrementer {
 private int step=1;
 public void increment(){ i+=step; }
 Incrementer(int step){ this.step=step; }
 }
 public void buildIncrementer(int step){
 return new Incrementer(step);
 }

 public int getValue(){
 return i;
 }
}

inner instance is linked
to this outer object

Counter c = new Counter()
Incrementer byOne = c.buildIncrementer(1);
Incrementer byFour = c.buildIncrementer(4);
byOne.increment();
byFour.increment();
c.getValue(); // -> 5

Local Inner Class
§ Declared inside a method
 public void m(){
 int j=1;
 class X {
 int plus(){ return j + 1; }
 }

 X x = new X();
 System.out.println(x.plus());
 }

♦ References to local variables are allowed
- Replaced with “current” value
- Set of such local variables is called closure

1

Local Inner Class
§ Declared inside a method
 public void m(){
 int j=1;
 class X {
 int plus(){ return j + 1; }
 }
 j++;
 X x = new X();
 System.out.println(x.plus());
 }

♦ Local variable cannot be changed after
being referred to by an inner class

1

What result should
we expect?

Local Inner Class
§ Declared inside a method
 public void m(){
 final int j=1;
 class X {
 int plus(){ return j + 1; }
 }
 j++;
 X x = new X();
 System.out.println(x.plus());
 }

♦ Local variables used in local inner classes
should be declared final
- Or be effectively final

Anonymous Inner Class
§  Local class without a name
§ Only possible with inheritance

♦ Implement an interface, or
♦ Extend a class

§  See: inheritance

Wrap-up
§  Java syntax is very similar to that of C
§  New primitive type: boolean
§  Objects are accessed through references

♦ References are disguised pointers!
§  Reference definition and object creation are

separate operations
§  Different scopes and visibility levels
§  Arrays are objects
§  Wrapper types encapsulate primitive types

159

