
The Java Environment

Object Oriented Programming

http://softeng.polito.it/courses/09CBI
Version 3.1.0

© Maurizio Morisio, Marco Torchiano, 2018

2

Licensing Note

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
You are free: to copy, distribute, display, and perform the work

Under the following conditions:
§  Attribution. You must attribute the work in the manner specified by

the author or licensor.

§  Non-commercial. You may not use this work for commercial purposes.

§  No Derivative Works. You may not alter, transform, or build upon this
work.

§  For any reuse or distribution, you must make clear to others the
license terms of this work.

§  Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

3

Learning objectives
§  Understand the basic features of Java

w What are portability and robustness?
§  Understand the concepts of bytecode

and interpreter
w What is the JVM?

§  Learn few coding conventions
w How shall I name identifiers?

Java Timeline
§  1991: develops a programming

language for cable TV set-top boxes
w Simple, OO, platform independent

§  1994: Java-based web browser
(HotJava),
w The idea of “applet” appears

§  1996: first version of Java (1.0)

See also: http://oracle.com.edgesuite.net/timeline/java/

Java timeline (cont�d)
§  1996: Netscape supports Java

w Java 1.02 released,
§  1997: Java 1.1 released, major leap

over for the language
§  1998: Java 2 platform (v. 1.2) released

(libraries)
§  2000: J2SE 1.3 (platform

enhancements, HotSpot)

5

Java timeline (cont�d)
§  2002: J2SE 1.4 (several new APIs), e.g.

w XML
w Logging

§  2005: J2SE 5.0 (Language enhancements)
w Generics

§  2006: Java SE 6 (Faster Graphics),
w goes open source

§  2010: Acquisition by
§  2011: Java SE 7 (I/O improvements)

6

Java timeline (cont�d)
§  2014: Java SE 8 (Language evolution)

w Lambda expressions
w Functional paradigm

§  2017: Java 9 releases (21/9)
w Modularization,
w jshell

§  2018: Java 10 (expected 20/3)
w Local var type inference

7

8

OO language features
§ OO language provides constructs to:

w Define classes (types) in a hierarchic way
(inheritance)

w Create/destroy objects dynamically
w Send messages (w/ dynamic binding)

§ No procedural constructs (pure OO
language)
w no functions, class methods only
w no global vars, class attributes only

Java features
§  Platform independence (portability)

w Write once, run everywhere
w Translated to intermediate language

(bytecode)
w Interpreted (with optimizations, i.e. JIT)

§ High dynamicity
w Run time loading and linking
w Dynamic array sizes

9

10

Java features (cont�d)
§  Robust language, less error prone

w Strong type model and no explicit
pointers
– Compile-time checks

w Run-time checks
– No array overflow

w Garbage collection
– No memory leaks

w Exceptions as a pervasive mechanism to
check errors

11

Java features (cont�d)
§  Shares many syntax elements w/ C++

w Learning curve is less steep for C/C++
programmers

§ Quasi-pure OO language
w Only classes and objects (no functions,

pointers, and so on)
w Basic types deviates from pure OO...

§  Easy to use

12

Java features (cont�d)
§  Supports �programming in the large�

w JavaDoc
w Class libraries (Packages)

§  Lots of standard utilities included
w Concurrency (thread)
w Graphics (GUI) (library)
w Network programming (library)

– socket, RMI
– applet (client side programming)

Java features - Classes
§  There is only one first level concept:

the class
public class First {
}

§  The source code of a class sits in
a .java file having the same name
w Rule: one file per class
w Enforced automatically by IDEs
w Case-wise name correspondence

13

Java features - Methods
§  In Java there are no functions, but only

methods within classes
§  The execution of a Java program starts

from a special method:
public static void main(String[] args)

§ Note
w return type is void
w args[0] is the first argument on the

command line (after the program name)

In C: int main(int argc, char* argv[])

Build and run

First.java

Java compiler

javac First.java

First.class

Java
Virtual Machine

Output

java First
bytecode

Note: no extension

16

Building and running
Java Source

(.java)

Java Compiler
(javac)

Java ByteCode
(.class)

Bytecode
Loader

Bytecode
Verifier

Interpreter

Run time

Just In Time
(JIT) Compiler

OS/HW

Java
Virtual

Machine
(JVM)

Build environment Run-Time environment

Java Ecosystem
§  Java language
§  Java platform

w JVM
w Class libraries (API)
w SDK

Dynamic class loading
§  JVM loading is based on the classpath:

w locations whence classes can be loaded
§ When class X is required:

w For each location in the classpath:
– Look for file X.class
– If present load the class
– Otherwise move to next location

Example: source code
File: First.java:
public class First {
 public static void main(String[] args){

 int a;
 a = 3;
 System.out.println(a);
 }

}

Example: execution
§  Command: java First

w Take the name of the class (First)
w Look for the bytecode for that class

–  In the classpath (and ‘.’ eventually)
w Load the class’s bytecode

– An perform all due initializations
w Look for the main() method
w Start execution from the main() method

Name of the class

21

Types of Java programs
§  Application

w It’s a common program, similarly to C
executable programs

w Runs through the Java interpreter (java)
of the installed Java Virtual Machine

public class HelloWorld {
 public static void main(String args[]){
 System.out.println(�Hello world!�);
 }

}

22

Types of Java programs
§  Applet (client browser)

w Java code dynamically downloaded
w Execution is limited by “sandbox”

§  Servlet (web server)
w In J2EE (Java 2 Enterprise Edition)

§ Midlet (mobile devices)
w In J2ME (Java 2 Micro Edition)

§  Android App (Android device)
w Java

23

Java development environment
§  Java SE 8  

(http://www.oracle.com/technetwork/java/javase)
w  javac compiler
w  jdb debugger
w  JRE (Java Run Time Environment)

–  JVM
–  Native packages (awt, swing, system, etc)

§  Docs
w  http://docs.oracle.com/javase/8/

§  Eclipse: http://www.eclipse.org/
w  Integrated development environment (IDE)
w  Eclipse IDE for Java Developers 

https://eclipse.org/downloads/packages/eclipse-ide-
java-developers/oxygen2

24

Coding conventions
§  Use camelBackCapitalization for

compound names, not underscore
§  Class name must be Capitalized
§ Method names, object instance names,

attributes, method variables must all
start in lowercase

§  Constants must be all uppercases (w/
underscore)

§  Indent properly

25

Coding conventions (example)
class ClassName {

 final static double PI = 3.14;

 private int attributeName;

 public void methodName {

 int var;
 if (var==0) {
 }
 }

}

Deployment - Jar
§  Java programs are packaged and

deployed in jar files.
§  Jar files are compressed archives

w Like zip files
w Contain additional meta-information

§  It is possible to directly execute the
contents of a jar file from a JVM
w JVM can load classes from within a JAR

Jar command
§  A jar file can be created using:

 jar cvf my.jar *.class
§  The contents can be seen with:

 jar tf my.jar
§  To run a class included in a jar:

 java -cp my.jar First
w The “-cp my.jar” option adds the jar to

the JVM classpath

Jar Main class
§ When a main class for a jar is defined,

it can executed simply by:
 java -jar my.jar

§  To define a main class, a manifest file
must be added to the jar with:
 jar cvfm my.jar manifest.txt

Main-Class: First

FAQ
§ Which is more “powefull”: Java or C?

w Performance: C is better though non that
much better (JIT)

w Ease of use: Java
w Error containment: Java

§ How can I generate an “.exe” file?
w You cannot. Use an installed JVM to

execute the program
w GCJ: http://gcc.gnu.org/java/

FAQ
§  I downloaded Java on my PC but I

cannot compile Java programs:
w Check you downloaded Java SDK

(including the compiler) not Java RTE or
JRE (just the JVM)

w Check the path includes pathToJava/bin
§ Note: Eclipse uses a different compiler

than javac

FAQ
§  Java cannot find a class

(ClassNotFoundException)
w The name of the class must not include

the extension .class:
– Es. java First

w Check you are in the right place in your
file system
–  java looks for classes starting from the

current working directory

32

Wrap-up session
§  Java is a quasi-pure OO language
§  Java is interpreted
§  Java is robust (no explicit pointers, static/

dynamic checks, garbage collection)
§  Java provides many utilities (data types,

threads, networking, graphics)
§  Java can used for different types of

programs
§  Coding conventions are not “just aesthetic”

