
Configuration Management

Version 1.0.1 - March 2018

© Marco Torchiano, 2017

Object Oriented Programming
Cataldo Basile

<cataldo.basile@polito.it>

Versioning

Thesis.docx ThesisFinal.docx ThesisFinal
Final.docx

ThesisFinalest
FinalForsure.docx

ThesisFinalestF**k
FinalForsure.docx

ThesisFinalest
Final.docx

5

Issues

 What is the history of a document?

 versioning

 What is the correct set of documents for
a specific need?

 configuration

 Who can access and change what?

 change control

 How the system is obtained?

 build

6

Configuration Management

 A discipline applying technical and
administrative direction and surveillance
to:

 identify and document the functional and
physical characteristics of a configuration
item,

 control changes to those characteristics,

 record and report change processing and
implementation status, and

 verify compliance with specified
requirements

[IEEE Std 828-2012]

7

Goals of CM

 Identify and manage parts of software

 Control access and changes to parts

 Allow to rebuild previous version of

software

8

Terms

 Configuration item (CI)

 Configuration Management aggregate

 Configuration

 Version

 Baseline

9

Configuration Item (CI)

 Aggregation of work products that is
treated as a single entity in the
configuration management process

 CI (typically a file):

 Has a name

 All its version are numbered and kept

 User decides to change version number with

specific operation (commit)

 It is possible to retrieve any previous version

10

Version

 The initial release or a re-release of a

configuration item

 Instance of CI, e.g.

 Req document 1.0

 Req document 1.1

11

Version identification

 Procedures for version identification

should define an unambiguous way of

identifying component versions

 Basic techniques for component

identification

 Version numbering

 Attribute-based identification

12

Version numbering

 Simple naming scheme uses a linear

derivation

e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

 Actual derivation structure is a tree or

a network rather than a sequence

 Names are not meaningful

 Hierarchical naming scheme may be

better

13

Configuration

 Set of CIs, each in a specific version

config 1

config 2

ClassA 1.0

config 3

ClassB 1.1

ClassA 1.1

ClassB 1.0

baseline
14

Configuration

 Snapshot of software at certain time

Various CIs, each in a certain version

 Same CI may appear in different

configurations

Also configuration has version

15

Baseline

 Configuration in stable, frozen form

Not all configurations are baselines

Any further change / development will

produce new version(s) of CI(s), will not

modify baseline

 Types of baselines

Development – for internal use

 Product – for delivery

16

CHANGE CONTROL

20

Repository

 A collection of all software-related

artifacts belonging to a system

 The location/format in which such a

collection is stored

21

Typical case

 Team develops software

 Many people need to access different

parts of software

Common repository (shared folder),

 Everybody can read/write

documents/files

22

File system limitations

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato
25

Check-in / check-out

 Check-out

 Extraction of CI from repository

– with goal of changing it or not

– After checkout next users are notified

 Check-in (or commit)

 Insertion of CI under control

26

Check-in / check-out - scenarios

 Lock-modify-unlock (or serialization)

Only one developer can change at a time

 Copy-modify-merge

Many change in parallel, then merge

28

Lock-Modify-Unlock

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato
29

Lock-Modify-Unlock

 Pro

Conflicts are impossible

 Cons

No parallel work is possible, large delays

can be induced

Developers can possibly forget to unlock

so blocking the whole team

30

Copy-Modify-Merge

independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that his file A is out of date. In other words, file A in the repository
has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his work-
ing copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modi-
fy-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Figure 1.5. The copy-modify-merge solution (continued)

Fundamental Concepts

5

© B.Collins-Sussman, B.W.Fitzpatrick C.M.Pilato
31

Copy-Modify-Merge

 Pros

More flexible

 Several developers can work in parallel

No developer can block others

 Con

 Requires care to resolve the conflicts

32

Tools

 CM + VM
 RCS

 CVS

 SCCS

 PCVS

 Subversion

 BitKeeper

 Git

33

VERSION CONTROL WITH

SUBVERSION

34

What is Subversion

 Free/open-source version control

system:

 it manages any collection of files and

directories over time in a central

repository;

 it remembers every change ever made to

your files and directories;

 it can access its repository across

networks

35

Features

 Directory versioning and true version
history

 Atomic commits

 Metadata versioning

 Several topologies of network access

 Consistent data handling

 Branching and tagging

 Usable by other applications and
languages

36

Architecture

37

The repository

 Central store of data

 It stores information in the form of a

file system

 Any number of clients connect to the

repository, and then

 read (update) or

write (commit) to these files.

38

The working copy (WC)

 Ordinary directory tree on your local

system, containing a copy of the

repository files (checkout)

 Subversion will never incorporate

other people's changes (update), nor

make your own changes available to

others (commit), until you explicitly

tell it to do so.

39

Revisions

 Each time the repository accepts a commit, it
creates a new state of the file system tree,
called a revision.

 Global revision numbers: each revision is
assigned a progressive unique natural
number (previous revision + 1)

 A freshly created repository has revision 0 (zero)

 The whole repo gets a new revision number

 Revision N represents the state of the repository
after the Nth commit.

40

Mixed revisions

 Suppose you have a working copy entirely at revision 10. You
edit the file foo.html and then perform an svn commit, which
creates revision 15 in the repository.

 Therefore the only safe thing the Subversion client can do is
mark the one file—foo.html—as being at revision 15. The rest
of the working copy remains at revision 10. This is a mixed
revision.

 Only by running svn update can the latest changes be
downloaded, and the whole working copy be marked as
revision 15.

 Memento:

 Every time you run svn commit, your working copy ends up with
some mixture of revisions: the things you just committed are
marked as having larger working revisions than everything else.

41

Basic Procedure

 Create working copy from a repository

 svn checkout <repository>

When ready…

 Synchronize contents of WC with repo

 svn update

Work on WC

 Possibly add new files

 svn add <file list>

 Push work to repository

 svn commit –m ”<Log message>"

42

Commit Log Message

 Structure of the message

<type>(<scope>): <subject>

<body>

<footer>

 Example

fix(middleware): ensure Range headers
adhere more closely to RFC 2616

Added one new dependency, use `range-
parser` (Express dependency) to compute
range. It is more well-tested in the
wild.

Fixes #2310

43

http://karma-runner.github.io/1.0/dev/git-commit-msg.html

Conflicts

 A conflict arise, upon commit, if the file

has been updated in the meanwhile

 N: the revision (BASE) that was modified

– the repo revision at the time of last update

 M: the current revision (HEAD) in the

repository (≥N)

 A conflict occurs if:

 M > N and

 Contents of revisions M and N differ

44

Conflicts

 Subversion places three extra unversioned files in
the working copy:

 filename.mine : the local file as it existed in the
working copy before the update

– This file has only the latest local changes in it.

 filename.rOLDREV : the file that was the BASE
revision before the update.

– The file checked out before any local edit.

 filename.rNEWREV : the file that Subversion client
just received from the server upon update.

– The HEAD revision of the repository.

 The original file contains a mix version of HEAD
(.rNEW) and BASE (.mine) with change markers

45

Conflict example

 You and Sally both edit file sandwich.txt at
the same time. Sally commits her changes,
and when you go to update your working
copy, you get a conflict

$ svn update

Conflict discovered in 'sandwich.txt'.

Select: (p)postpone,(df)diff-full,(e)edit,

 (h)elp for more options : p

C sandwich.txt

Updated to revision 2.

46

Conflict example

 In your working copy you get

$ ls

sandwich.txt

sandwich.txt.mine

sandwich.txt.r1

sandwich.txt.r2

 You're going to have to edit

sandwich.txt to resolve the conflicts

47

Conflict example

 The contents of the file sandwich.txt is

Top piece of bread

Mayonnaise

Lettuce

<<<<<<< .mine

Salami

Mortadella

Prosciutto

=======

Sauerkraut

Grilled Chicken

>>>>>>> .r2

Creole Mustard
Bottom piece of bread

Changes your made in
the conflicting area

Changes Sally previously
committed in the area

48

Conflict example

 The updated file sandwich.txt you

create and saved is

Top piece of bread

Mayonnaise

Lettuce

Mortadella

Prosciutto

Grilled Chicken

Creole Mustard

Bottom piece of bread

Pick and choose
“by hand”

49

Conflict example

 Once the conflict has been composed

you ought to signal it has been

resolved

$ svn resolve --accept working sandwich.txt

Resolved conflicted state of 'sandwich.txt'

$ svn commit -m ”Pick and choosen.”

 50

Typical work cycle

Update your working copy
•svn update

Make changes

• svn copy • svn add
• svn delete • svn move

Examine your changes

• svn status
• svn diff

• svn revert

Merge others' changes into
your working copy

• svn update • svn resolve

Commit your changes
•svn commit

51

Branches: general concept

 Line of development that exists

independently of another line, yet still

shares a common history if you look far

enough back in time.

 A branch always takes life as a copy of

something, and moves on from there,

independently generating

its own history

52

Branches: motivation

 Branches allow working in isolation

form the main branch

 Several new features or fixes can be

developed independently and

concurrently

When work is complete, they can be

merged into the main branch

 Branches may represent different

configurations, e.g. by platform

53

Branches in Subversion

 Unlike many other version control systems,
Subversion's branches exist as normal filesystem
directories in the repository, not in an extra
dimension. These directories just happen to carry
some extra historical information.

 Subversion has no internal concept of a branch—
only copies. When you copy a directory, the
resulting directory is only a “branch” because you
attach that meaning to it. You may think of the
directory differently, or treat it differently, but to
Subversion it's just an ordinary directory that
happens to have been created by copying.

54

Branches in Subversion
You create a branche with svn copy:

$ svn copy /trunk \
/calc/branches/my-calc-branch \

Memento:
Use svn switch to receive updates

of the trunk in your branch

55

Subversion repo structure

 To use branches a repository contains

two top-level folders:

 trunk: contains the main branch

 branches: contain the branches

– one sub-folder for each branch

56

Merge

 When work is done in a branch, it must be
merged into the trunk. This is done by svn
merge command.

 Similar to svn diff command, instead of printing
the differences to your terminal, however, it applies
them directly to your working copy as local
modifications. Svn diff command ignores ancestry,
svn merge does not.

 A better name for the command might have been svn
diffand-apply, because that's all that happens: two
repository trees are compared, and the differences
are applied to a working copy.

 Conflicts may be produced by svn merge:

 Conflicts are solved in the usual way

57

Semantic Versioning

 Product numbering based on

MAJOR.MINOR.PATCH

 Increment

MAJOR: when you make (possibly
incompatible) API changes,

MINOR: when you add functionality in a
backwards-compatible manner, and

 PATCH: when you make backwards-
compatible bug fixes.

58

http://semver.org

References and Further Readings

 IEEE STD 1042 – 1987 IEEE guide to

software configuration management

 IEEE STD 828-2012: IEEE Standard for

Configuration Management in Systems and

Software Engineering

 B.Collins-Sussman, B.W.Fitzpatrick

C.M.Pilato. Version Control with Subversion:

For Subversion 1.7, 2011

 Semantic Versioning. http://semver.org

 59

