
The Java Environment

Object Oriented Programming

Cataldo Basile

<cataldo.basile@polito.it>

Version 3.1.0

© Maurizio Morisio, Marco Torchiano, 2018

http://softeng.polito.it/courses/09CBI

Java Timeline

 1991: develops a programming

language for cable TV set-top boxes

 Simple, OO, platform independent

 1994: Java-based web browser

(HotJava),

 The idea of “applet” appears

 1996: first version of Java (1.0)

See also: http://oracle.com.edgesuite.net/timeline/java/

Java timeline (cont’d)

 1996: Netscape supports Java

 Java 1.02 released,

 1997: Java 1.1 released, major leap

over for the language

 1998: Java 2 platform (v. 1.2) released

(libraries)

 2000: J2SE 1.3 (platform

enhancements, HotSpot)

 5

Java timeline (cont’d)

 2002: J2SE 1.4 (several new APIs), e.g.

 XML

 Logging

 2005: J2SE 5.0 (Language enhancements)

 Generics

 2006: Java SE 6 (Faster Graphics)

 goes open source

 2010: Acquisition by

 2011: Java SE 7 (I/O improvements)

6

Java timeline (cont’d)

 2014: Java SE 8 (Language evolution)

 Lambda expressions

 Functional paradigm

 2017: Java 9 releases (21/9)

Modularization,

 jshell

 2018: Java 10 (expected 20/3)

 Local var type inference

 7

Java Ecosystem

 Java language

 Java platform

 JVM

Class libraries (API)

 SDK

9

Java development environment

 Java SE 8
(http://www.oracle.com/technetwork/java/javase)
 javac compiler

 jdb debugger

 JRE (Java Run Time Environment)
– JVM

– Native packages (awt, swing, system, etc)

 Docs
 http://docs.oracle.com/javase/8/

 Eclipse: http://www.eclipse.org/

 Integrated development environment (IDE)

 Eclipse IDE for Java Developers
https://eclipse.org/downloads/packages/eclipse-ide-
java-developers/oxygen2

Java - Classes

 There is only one first level concept:
the class

public class First {

}

 The source code of a class sits in a
.java file having the same name

 Rule: one file per class

 Enforced automatically by IDEs

Case-wise name correspondence

10

Java - Methods

 In Java there are no functions, but only
methods within classes

 The execution of a Java program starts
from a special method:

public static void main(String[] args)

 Note

 return type is void

 args[0] is the first argument on the
command line (after the program name)

In C: int main(int argc, char* argv[])

Example: source code

File: First.java:

public class First {

 public static void main(String[] args){

 int a;

 a = 3;

 System.out.println(a);

 }

}

13

Coding conventions

 Use camelBackCapitalization for
compound names, not underscore

 Class name must be Capitalized

 Method names, object instance names,
attributes, method variables must all
start in lowercase

 Constants must be all uppercases (w/
underscore)

 Indent properly

14

Coding conventions (example)

class ClassName {

final static double PI = 3.14;

private int attributeName;

 public void methodName {

 int var;

 if (var==0) {

 }

 }

}

Build and run

First.java

Java compiler

javac First.java

First.class

Java
Virtual Machine

Output

java First

bytecode

16

Build and run (zoom in)

Java Source

(.java)

Java Compiler

(javac)

Java ByteCode

(.class)

Bytecode

Loader

Bytecode

Verifier

Interpreter

Run time

Just In Time

(JIT) Compiler

OS/HW

Java

Virtual

Machine

(JVM)

Build environment Run-Time environment

Dynamic class loading

 JVM loading is based on the classpath:

 locations whence classes can be loaded

 When class X is required:

 For each location in the classpath:

–Look for file X.class

– If present load the class

–Otherwise move to next location

Example: execution

 Command: java First

 Take the name of the class (First)

 Look for the bytecode for that class

– In the classpath (and possibly ‘./’)

 Load the class’s bytecode

– And perform all due initializations

 Look for the main() method

 Start execution from the main() method

Name of the class

JAVA FEATURES

20

OO language features

 OO language provides constructs to:

Define classes (types) in a hierarchic way
(inheritance)

Create/destroy objects dynamically

 Send messages (w/ dynamic binding)

 No procedural constructs (pure OO
language)

 no functions, class methods only

 no global vars, class attributes only

Java features

 Platform independence (portability)

Write once, run everywhere

 Translated to intermediate language

(bytecode)

 Interpreted (with optimizations, i.e. JIT)

 High dynamicity

 Run time loading and linking

Dynamic array sizes

21

22

Java features (cont’d)

 Robust language, less error prone

 Strong type model and no explicit
pointers
– Compile-time checks

 Run-time checks
– No array overflow

Garbage collection
– No memory leaks

 Exceptions as a pervasive mechanism to
check errors

23

Java features (cont’d)

 Shares many syntax elements w/ C++
 Learning curve is less steep for C/C++

programmers

 Quasi-pure OO language
Only classes and objects (no functions,

pointers, and so on)
 Basic types deviates from pure OO...

 Easy to use

24

Java features (cont’d)

 Supports “programming in the large”

 JavaDoc

Class libraries (Packages)

 Lots of standard utilities included

Concurrency (thread)

Graphics (GUI) (library)

Network programming (library)

– socket, RMI

– applet (client side programming)

PROGRAM TYPES AND JARS

26

Types of Java programs

 Application

 It’s a common program, similarly to C
executable programs

 Runs through the Java interpreter (java)
of the installed Java Virtual Machine

public class HelloWorld {

public static void main(String args[]){

 System.out.println(“Hello world!”);
}

}

27

Types of Java programs

 Applet (client browser)

 Java code dynamically downloaded

 Execution is limited by “sandbox”

 Servlet (web server)

 In J2EE (Java 2 Enterprise Edition)

 Midlet (mobile devices)

 In J2ME (Java 2 Micro Edition)

 Android App (Android device)

 Java

Deployment - Jar

 Java programs are packaged and
deployed in jar files.

 Jar files are compressed archives

 Like zip files

Contain additional meta-information

 It is possible to directly execute the

contents of a jar file from a JVM

 JVM can load classes from within a JAR

Jar command

 A jar file can be created using:

 jar cvf my.jar *.class

 The contents can be seen with:

 jar tf my.jar

 To run a class included in a jar:

 java -cp my.jar First

 The “-cp my.jar” option adds the jar to
the JVM classpath

Jar Main class

 When a main class for a jar is defined,
it can executed simply by:

 java -jar my.jar

 To define a main class, a manifest file

must be added to the jar with:

 jar cvfm my.jar manifest.txt

Main-Class: First

FAQ

Issues and a few curiosities about Java

FAQ

 Which is more “powerful”: Java or C?

 Performance: C is better

– though someone says non that much better
(JIT)

 Ease of use: Java

 Error containment: Java

 How can I generate an “.exe” file?

 You cannot. Use an installed JVM to
execute the program

GCJ is dead: http://gcc.gnu.org/java/

FAQ

 I downloaded Java on my PC but I
cannot compile Java programs:

Check you downloaded Java SDK
(including the compiler) not Java RTE or
JRE (just the JVM)

Check the path includes pathToJava/bin

 Note: Eclipse uses a different compiler
than javac

FAQ

 Java cannot find a class

(ClassNotFoundException)

 The name of the class must not include

the extension .class:

– Es. java First

Check you are in the right place in your

file system

– java looks for classes starting from the

current working directory

35

Wrap-up session

 Java is a quasi-pure OO language

 Java is interpreted

 Java is robust (no explicit pointers,
static/dynamic checks, garbage collection)

 Java provides many utilities (data types,
threads, networking, graphics)

 Java can used for different types of
programs

 Coding conventions are not “just aesthetic”

