
The Java Environment

Object Oriented Programming

Cataldo Basile

<cataldo.basile@polito.it>

Version 3.1.0

© Maurizio Morisio, Marco Torchiano, 2018

http://softeng.polito.it/courses/09CBI

Java Timeline

 1991: develops a programming

language for cable TV set-top boxes

 Simple, OO, platform independent

 1994: Java-based web browser

(HotJava),

 The idea of “applet” appears

 1996: first version of Java (1.0)

See also: http://oracle.com.edgesuite.net/timeline/java/

Java timeline (cont’d)

 1996: Netscape supports Java

 Java 1.02 released,

 1997: Java 1.1 released, major leap

over for the language

 1998: Java 2 platform (v. 1.2) released

(libraries)

 2000: J2SE 1.3 (platform

enhancements, HotSpot)

 5

Java timeline (cont’d)

 2002: J2SE 1.4 (several new APIs), e.g.

 XML

 Logging

 2005: J2SE 5.0 (Language enhancements)

 Generics

 2006: Java SE 6 (Faster Graphics)

 goes open source

 2010: Acquisition by

 2011: Java SE 7 (I/O improvements)

6

Java timeline (cont’d)

 2014: Java SE 8 (Language evolution)

 Lambda expressions

 Functional paradigm

 2017: Java 9 releases (21/9)

Modularization,

 jshell

 2018: Java 10 (expected 20/3)

 Local var type inference

 7

Java Ecosystem

 Java language

 Java platform

 JVM

Class libraries (API)

 SDK

9

Java development environment

 Java SE 8
(http://www.oracle.com/technetwork/java/javase)
 javac compiler

 jdb debugger

 JRE (Java Run Time Environment)
– JVM

– Native packages (awt, swing, system, etc)

 Docs
 http://docs.oracle.com/javase/8/

 Eclipse: http://www.eclipse.org/

 Integrated development environment (IDE)

 Eclipse IDE for Java Developers
https://eclipse.org/downloads/packages/eclipse-ide-
java-developers/oxygen2

Java - Classes

 There is only one first level concept:
the class

public class First {

}

 The source code of a class sits in a
.java file having the same name

 Rule: one file per class

 Enforced automatically by IDEs

Case-wise name correspondence

10

Java - Methods

 In Java there are no functions, but only
methods within classes

 The execution of a Java program starts
from a special method:

public static void main(String[] args)

 Note

 return type is void

 args[0] is the first argument on the
command line (after the program name)

In C: int main(int argc, char* argv[])

Example: source code

File: First.java:

public class First {

 public static void main(String[] args){

 int a;

 a = 3;

 System.out.println(a);

 }

}

13

Coding conventions

 Use camelBackCapitalization for
compound names, not underscore

 Class name must be Capitalized

 Method names, object instance names,
attributes, method variables must all
start in lowercase

 Constants must be all uppercases (w/
underscore)

 Indent properly

14

Coding conventions (example)

class ClassName {

final static double PI = 3.14;

private int attributeName;

 public void methodName {

 int var;

 if (var==0) {

 }

 }

}

Build and run

First.java

Java compiler

javac First.java

First.class

Java
Virtual Machine

Output

java First

bytecode

16

Build and run (zoom in)

Java Source

(.java)

Java Compiler

(javac)

Java ByteCode

(.class)

Bytecode

Loader

Bytecode

Verifier

Interpreter

Run time

Just In Time

(JIT) Compiler

OS/HW

Java

Virtual

Machine

(JVM)‏

Build environment Run-Time environment

Dynamic class loading

 JVM loading is based on the classpath:

 locations whence classes can be loaded

 When class X is required:

 For each location in the classpath:

–Look for file X.class

– If present load the class

–Otherwise move to next location

Example: execution

 Command: java First

 Take the name of the class (First)

 Look for the bytecode for that class

– In the classpath (and possibly ‘./’)

 Load the class’s bytecode

– And perform all due initializations

 Look for the main() method

 Start execution from the main() method

Name of the class

JAVA FEATURES

20

OO language features

 OO language provides constructs to:

Define classes (types) in a hierarchic way
(inheritance)

Create/destroy objects dynamically

 Send messages (w/ dynamic binding)

 No procedural constructs (pure OO
language)

 no functions, class methods only

 no global vars, class attributes only

Java features

 Platform independence (portability)

Write once, run everywhere

 Translated to intermediate language

(bytecode)

 Interpreted (with optimizations, i.e. JIT)

 High dynamicity

 Run time loading and linking

Dynamic array sizes

21

22

Java features (cont’d)

 Robust language, less error prone

 Strong type model and no explicit
pointers
– Compile-time checks

 Run-time checks
– No array overflow

Garbage collection
– No memory leaks

 Exceptions as a pervasive mechanism to
check errors

23

Java features (cont’d)

 Shares many syntax elements w/ C++
 Learning curve is less steep for C/C++

programmers

 Quasi-pure OO language
Only classes and objects (no functions,

pointers, and so on)
 Basic types deviates from pure OO...

 Easy to use

24

Java features (cont’d)

 Supports “programming in the large”

 JavaDoc

Class libraries (Packages)

 Lots of standard utilities included

Concurrency (thread)

Graphics (GUI) (library)

Network programming (library)

– socket, RMI

– applet (client side programming)

PROGRAM TYPES AND JARS

26

Types of Java programs

 Application

 It’s a common program, similarly to C
executable programs

 Runs through the Java interpreter (java)
of the installed Java Virtual Machine

public class HelloWorld {

public static void main(String args[]){

 System.out.println(“Hello world!”);
}

}

27

Types of Java programs

 Applet (client browser)

 Java code dynamically downloaded

 Execution is limited by “sandbox”

 Servlet (web server)

 In J2EE (Java 2 Enterprise Edition)

 Midlet (mobile devices)

 In J2ME (Java 2 Micro Edition)

 Android App (Android device)

 Java

Deployment - Jar

 Java programs are packaged and
deployed in jar files.

 Jar files are compressed archives

 Like zip files

Contain additional meta-information

 It is possible to directly execute the

contents of a jar file from a JVM

 JVM can load classes from within a JAR

Jar command

 A jar file can be created using:

 jar cvf my.jar *.class

 The contents can be seen with:

 jar tf my.jar

 To run a class included in a jar:

 java -cp my.jar First

 The “-cp my.jar” option adds the jar to
the JVM classpath

Jar Main class

 When a main class for a jar is defined,
it can executed simply by:

 java -jar my.jar

 To define a main class, a manifest file

must be added to the jar with:

 jar cvfm my.jar manifest.txt

Main-Class: First

FAQ

Issues and a few curiosities about Java

FAQ

 Which is more “powerful”: Java or C?

 Performance: C is better

– though someone says non that much better
(JIT)

 Ease of use: Java

 Error containment: Java

 How can I generate an “.exe” file?

 You cannot. Use an installed JVM to
execute the program

GCJ is dead: http://gcc.gnu.org/java/

FAQ

 I downloaded Java on my PC but I
cannot compile Java programs:

Check you downloaded Java SDK
(including the compiler) not Java RTE or
JRE (just the JVM)

Check the path includes pathToJava/bin

 Note: Eclipse uses a different compiler
than javac

FAQ

 Java cannot find a class

(ClassNotFoundException)

 The name of the class must not include

the extension .class:

– Es. java First

Check you are in the right place in your

file system

– java looks for classes starting from the

current working directory

35

Wrap-up session

 Java is a quasi-pure OO language

 Java is interpreted

 Java is robust (no explicit pointers,
static/dynamic checks, garbage collection)

 Java provides many utilities (data types,
threads, networking, graphics)

 Java can used for different types of
programs

 Coding conventions are not “just aesthetic”

