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Java Timeline 

 1991:            develops a programming 

language for cable TV set-top boxes 

 Simple, OO, platform independent 

 1994: Java-based web browser 

(HotJava),  

 The idea of “applet” appears 

 1996: first version of Java (1.0) 

See also: http://oracle.com.edgesuite.net/timeline/java/ 



Java timeline (cont’d)  

 1996: Netscape supports Java 

 Java 1.02 released, 

 1997: Java 1.1 released, major leap 

over for the language 

 1998: Java 2 platform (v. 1.2) released 

(libraries) 

 2000: J2SE 1.3 (platform 

enhancements, HotSpot) 
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Java timeline (cont’d)  

 2002: J2SE 1.4 (several new APIs), e.g. 

 XML 

 Logging 

 2005: J2SE 5.0 (Language enhancements) 

 Generics 

 2006: Java SE 6 (Faster Graphics) 

 goes open source 

 2010: Acquisition by  

 2011: Java SE 7 (I/O improvements) 
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Java timeline (cont’d)  

 2014: Java SE 8 (Language evolution) 

 Lambda expressions 

 Functional paradigm 

 2017: Java 9 releases (21/9) 

Modularization,  

 jshell 

 2018: Java 10 (expected 20/3) 

 Local var type inference 
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Java Ecosystem 

 Java language 

 Java platform 

 JVM 

Class libraries (API) 

 SDK 
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Java development environment 

 Java SE 8  
(http://www.oracle.com/technetwork/java/javase) 
 javac compiler 

 jdb debugger 

 JRE (Java Run Time Environment)  
– JVM 

– Native packages (awt, swing, system, etc)  

 Docs 
 http://docs.oracle.com/javase/8/ 

 Eclipse: http://www.eclipse.org/ 

 Integrated development environment (IDE) 

 Eclipse IDE for Java Developers 
https://eclipse.org/downloads/packages/eclipse-ide-
java-developers/oxygen2 



Java - Classes 

 There is only one first level concept: 
the class 

public class First { 

} 

 The source code of a class sits in a 
.java file having the same name 

 Rule: one file per class 

 Enforced automatically by IDEs 

Case-wise name correspondence 
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Java - Methods 

 In Java there are no functions, but only 
methods within classes 

 The execution of a Java program starts 
from a special method: 

public static void main(String[] args) 

 

 Note 

 return type is void 

 args[0] is the first argument on the 
command line (after the program name) 

 

In C: int main(int argc, char* argv[]) 



Example: source code 

File: First.java: 

public class First { 

  public static void main(String[] args){ 

    int a; 

    a = 3; 

   System.out.println(a); 

  } 

} 
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Coding conventions 

 Use camelBackCapitalization for 
compound names, not underscore 

 Class name must be Capitalized 

 Method names, object instance names, 
attributes, method variables must all 
start in lowercase 

 Constants must be all uppercases (w/ 
underscore) 

 Indent properly 
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Coding conventions (example)  

class ClassName { 

 

final static double PI = 3.14; 

 

private int attributeName; 

 

    public void methodName { 

   int var; 

  if ( var==0 ) { 

  } 

 } 

} 



Build and run 

First.java 

Java compiler 

javac First.java 

First.class 

Java  
Virtual Machine 

Output 

java First 

bytecode 
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Build and run (zoom in)  

Java Source 

(.java) 

Java Compiler 

(javac) 

Java ByteCode 

(.class) 

Bytecode 

Loader 

Bytecode 

Verifier 

Interpreter 

Run time 

Just In Time  

(JIT) Compiler 

OS/HW 

Java 

Virtual 

Machine 

(JVM)‏ 

Build environment Run-Time environment 



Dynamic class loading 

 JVM loading is based on the classpath: 

 locations whence classes can be loaded 

 When class X is required:  

 For each location in the classpath: 

–Look for file X.class 

– If present load the class 

–Otherwise move to next location 



Example: execution 

 Command: java First 

 Take the name of the class (First) 

 Look for the bytecode for that class 

– In the classpath (and possibly ‘./’) 

 Load the class’s bytecode 

– And perform all due initializations 

 Look for the main() method 

 Start execution from the main() method 

 

 

Name of the class 



JAVA FEATURES 
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OO language features 

 OO language provides constructs to: 

Define classes (types) in a hierarchic way 
(inheritance)  

Create/destroy objects dynamically 

 Send messages (w/ dynamic binding) 

 No procedural constructs (pure OO 
language) 

 no functions, class methods only 

 no global vars, class attributes only 



Java features 

 Platform independence (portability) 

Write once, run everywhere 

 Translated to intermediate language 

(bytecode)  

 Interpreted (with optimizations, i.e. JIT) 

 High dynamicity 

 Run time loading and linking 

Dynamic array sizes 

21 



22 

Java features (cont’d)  

 Robust language, less error prone  

 Strong type model and no explicit 
pointers 
– Compile-time checks 

 Run-time checks 
– No array overflow 

Garbage collection 
– No memory leaks 

 Exceptions as a pervasive mechanism to 
check errors 
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Java features (cont’d)  

 Shares many syntax elements w/ C++ 
 Learning curve is less steep for C/C++ 

programmers  

 Quasi-pure OO language 
Only classes and objects (no functions, 

pointers, and so on) 
 Basic types deviates from pure OO... 

 Easy to use 
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Java features (cont’d)  

 Supports “programming in the large” 

 JavaDoc 

Class libraries (Packages)  

 Lots of standard utilities included 

Concurrency (thread)  

Graphics (GUI) (library)  

Network programming (library)  

– socket, RMI 

– applet (client side programming)  



PROGRAM TYPES AND JARS 
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Types of Java programs 

 Application 

 It’s a common program, similarly to C 
executable programs 

 Runs through the Java interpreter (java) 
of the installed Java Virtual Machine 

public class HelloWorld { 

public static void main(String args[]){ 

 System.out.println(“Hello world!”); 
} 

} 
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Types of Java programs 

 Applet (client browser) 

 Java code dynamically downloaded 

 Execution is limited by “sandbox” 

 Servlet (web server) 

 In J2EE (Java 2 Enterprise Edition) 

 Midlet (mobile devices) 

 In J2ME (Java 2 Micro Edition) 

 Android App (Android device) 

 Java 

 



Deployment - Jar 

 Java programs are packaged and 
deployed in jar files.  

 Jar files are compressed archives  

 Like zip files 

Contain additional meta-information 

 It is possible to directly execute the 

contents of a jar file from a JVM 

 JVM can load classes from within a JAR 



Jar command 

 A jar file can be created using: 

  jar cvf my.jar *.class 

 The contents can be seen with: 

  jar tf my.jar 

 To run a class included in a jar: 

  java -cp my.jar First 

 The “-cp my.jar” option adds the jar to 
the JVM classpath 

 



Jar Main class 

 When a main class for a jar is defined, 
it can executed simply by: 

  java -jar my.jar 

 To define a main class, a manifest file 

must be added to the jar with: 

  jar cvfm my.jar manifest.txt 

Main-Class: First 



FAQ 

Issues and a few curiosities about Java 



FAQ 

 Which is more “powerful”: Java or C? 

 Performance: C is better  

– though someone says non that much better 
(JIT) 

 Ease of use: Java 

 Error containment: Java 

 How can I generate an “.exe” file? 

 You cannot. Use an installed JVM to 
execute the program 

GCJ is dead: http://gcc.gnu.org/java/ 

 



FAQ 

 I downloaded Java on my PC but I 
cannot compile Java programs: 

Check you downloaded Java SDK 
(including the compiler) not Java RTE or 
JRE (just the JVM) 

Check the path includes pathToJava/bin 

 Note: Eclipse uses a different compiler 
than javac 

 



FAQ 

 Java cannot find a class 

(ClassNotFoundException) 

 The name of the class must not include 

the extension .class: 

– Es. java First 

Check you are in the right place in your 

file system 

– java looks for classes starting from the 

current working directory 
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Wrap-up session 

 Java is a quasi-pure OO language 

 Java is interpreted 

 Java is robust (no explicit pointers, 
static/dynamic checks, garbage collection) 

 Java provides many utilities (data types, 
threads, networking, graphics) 

 Java can used for different types of 
programs 

 Coding conventions are not “just aesthetic” 

 


